Construct an integrative representation of multi-omic data with MultiAssayExperiment
Source: R/MultiAssayExperiment-class.R
MultiAssayExperiment.RdThe constructor function for the MultiAssayExperiment combines
multiple data elements from the different hierarchies of data
(study, experiments, and samples). It can create instances where neither
a sampleMap or a colData set is provided. Please see the
MultiAssayExperiment API documentation for more information.
Arguments
- experiments
A
listorExperimentListof all combined experiments- colData
A
DataFrameordata.frameof characteristics for all biological units- sampleMap
A
DataFrameordata.frameof assay names, sample identifiers, and colname samples- metadata
An optional argument of "ANY" class (usually list) for content describing the experiments
- drops
A
listof unmatched information (included after subsetting)
colData
The colData input can be either DataFrame or data.frame with
subsequent coercion to DataFrame. The rownames in the colData must match
the colnames in the experiments if no sampleMap is provided.
experiments
The experiments input can be of class SimpleList or list.
This input becomes the ExperimentList. Each element of the
input list or List must be named, rectangular with two dimensions, and
have dimnames.
sampleMap
The sampleMap can either be input as DataFrame or
data.frame with eventual coercion to DataFrame. The sampleMap relates
biological units and biological measurements within each assay. Each row in
the sampleMap is a single such link. The standard column names of the
sampleMap are "assay", "primary", and "colname". Note that the "assay"
column is a factor corresponding to the names of each experiment in the
ExperimentList. In the case where these names do not match between the
sampleMap and the experiments, the documented experiments in the
sampleMap take precedence and experiments are dropped by the harmonization
procedure. The constructor function will generate a sampleMap in the case
where it is not provided and this method may be a 'safer' alternative for
creating the MultiAssayExperiment (so long as the rownames are identical
in the colData, if provided). An empty sampleMap may produce empty
experiments if the levels of the "assay" factor in the sampleMap do not
match the names in the ExperimentList.
Examples
## Run the example ExperimentList
example("ExperimentList")
#>
#> ExprmL> ## Create an empty ExperimentList instance
#> ExprmL> ExperimentList()
#> ExperimentList class object of length 0:
#>
#> ExprmL> ## Create array matrix and AnnotatedDataFrame to create an ExpressionSet class
#> ExprmL> arraydat <- matrix(data = seq(101, length.out = 20), ncol = 4,
#> ExprmL+ dimnames = list(
#> ExprmL+ c("ENST00000294241", "ENST00000355076",
#> ExprmL+ "ENST00000383706","ENST00000234812", "ENST00000383323"),
#> ExprmL+ c("array1", "array2", "array3", "array4")
#> ExprmL+ ))
#>
#> ExprmL> colDat <- data.frame(slope53 = rnorm(4),
#> ExprmL+ row.names = c("array1", "array2", "array3", "array4"))
#>
#> ExprmL> ## SummarizedExperiment constructor
#> ExprmL> exprdat <- SummarizedExperiment::SummarizedExperiment(arraydat,
#> ExprmL+ colData = colDat)
#>
#> ExprmL> ## Create a sample methylation dataset
#> ExprmL> methyldat <- matrix(data = seq(1, length.out = 25), ncol = 5,
#> ExprmL+ dimnames = list(
#> ExprmL+ c("ENST00000355076", "ENST00000383706",
#> ExprmL+ "ENST00000383323", "ENST00000234812", "ENST00000294241"),
#> ExprmL+ c("methyl1", "methyl2", "methyl3",
#> ExprmL+ "methyl4", "methyl5")
#> ExprmL+ ))
#>
#> ExprmL> ## Create a sample RNASeqGene dataset
#> ExprmL> rnadat <- matrix(
#> ExprmL+ data = sample(c(46851, 5, 19, 13, 2197, 507,
#> ExprmL+ 84318, 126, 17, 21, 23979, 614), size = 20, replace = TRUE),
#> ExprmL+ ncol = 4,
#> ExprmL+ dimnames = list(
#> ExprmL+ c("XIST", "RPS4Y1", "KDM5D", "ENST00000383323", "ENST00000234812"),
#> ExprmL+ c("samparray1", "samparray2", "samparray3", "samparray4")
#> ExprmL+ ))
#>
#> ExprmL> ## Create a mock RangedSummarizedExperiment from a data.frame
#> ExprmL> rangedat <- data.frame(chr="chr2", start = 11:15, end = 12:16,
#> ExprmL+ strand = c("+", "-", "+", "*", "."),
#> ExprmL+ samp0 = c(0,0,1,1,1), samp1 = c(1,0,1,0,1), samp2 = c(0,1,0,1,0),
#> ExprmL+ row.names = c(paste0("ENST", "00000", 135411:135414), "ENST00000383323"))
#>
#> ExprmL> rangeSE <- SummarizedExperiment::makeSummarizedExperimentFromDataFrame(rangedat)
#>
#> ExprmL> ## Combine to a named list and call the ExperimentList constructor function
#> ExprmL> assayList <- list(Affy = exprdat, Methyl450k = methyldat, RNASeqGene = rnadat,
#> ExprmL+ GISTIC = rangeSE)
#>
#> ExprmL> ## Use the ExperimentList constructor
#> ExprmL> ExpList <- ExperimentList(assayList)
## Create sample maps for each experiment
exprmap <- data.frame(
primary = c("Jack", "Jill", "Barbara", "Bob"),
colname = c("array1", "array2", "array3", "array4"),
stringsAsFactors = FALSE)
methylmap <- data.frame(
primary = c("Jack", "Jack", "Jill", "Barbara", "Bob"),
colname = c("methyl1", "methyl2", "methyl3", "methyl4", "methyl5"),
stringsAsFactors = FALSE)
rnamap <- data.frame(
primary = c("Jack", "Jill", "Bob", "Barbara"),
colname = c("samparray1", "samparray2", "samparray3", "samparray4"),
stringsAsFactors = FALSE)
gistmap <- data.frame(
primary = c("Jack", "Bob", "Jill"),
colname = c("samp0", "samp1", "samp2"),
stringsAsFactors = FALSE)
## Combine as a named list and convert to a DataFrame
maplist <- list(Affy = exprmap, Methyl450k = methylmap,
RNASeqGene = rnamap, GISTIC = gistmap)
## Create a sampleMap
sampMap <- listToMap(maplist)
## Create an example phenotype data
colDat <- data.frame(sex = c("M", "F", "M", "F"), age = 38:41,
row.names = c("Jack", "Jill", "Bob", "Barbara"))
## Create a MultiAssayExperiment instance
mae <- MultiAssayExperiment(experiments = ExpList, colData = colDat,
sampleMap = sampMap)