User friendly interface to edgeR for microbiome data
get_edgeR_results.RdReturns an object of class topTags containing results filtered by FDR < alpha for one comparison. get_edgeR_results_all_levels() returns a list of topTags objects returned by get_edgeR_results() for all levels of the first variable in the formula.
Usage
get_edgeR_results(
formla,
pseq = NYC_HANES,
method = c("BH", "IHW"),
coef = 2,
alph = 0.01,
filtering = method[1] == "BH",
countMinimum = 8,
percentMinimumHaveCount = NULL,
nMinimumHaveCount = 3,
NA.RM = TRUE
)
get_edger_results_all_levels(formla, ...)
edger_list_to_data.frame(list_models)
get_all_edgeR_models(
vars,
varlabels = vars,
adjusted_for,
to.data.frame = TRUE,
...
)Arguments
- formla
formula. specifies the design matrix used by
edgeR::glmFit.- pseq
object of class
phyloseq- method
character. Specifies the method of multiple testing correction to apply, either "BH" (Benjamini-Hochberg) or "IHW" (independent hypothesis weighting).
- coef
integer. Specifies which linear model coefficient to test (default 2).
- alph
numeric. Specifies what FDR level is considered alpha, and only keeps results with FDR less than this number.
- filtering
logical. Whether or not to apply pre-filtering.
- countMinimum
integer. If
filtering==TRUE, the minimum count required for an OTU to be retained. Requires eitherpercentMinimumHaveCountornMinimumHaveCount.- percentMinimumHaveCount
numeric. If
filtering==TRUE, the minimum percentage of samples that must havecountMinimumcounts for an OTU to be retained.- nMinimumHaveCount
numeric. If
filtering==TRUE, the minimum number of samples that must havecountMinimumcounts for an OTU to be retained.- NA.RM
logical. Whether or not to remove samples with NA values in the
sample_data().- ...
further arguments passed to
get_edgeR_results- vars
character vector, containing names of each independent variable for which you would like a separate model.
- varlabels
character vector, containing variable labels for printing
- adjusted_for
character vector, containing names of the additional adjustment variables to include in each model
- to.data.frame
logical. Whether or not to return a combined data.frame of all model results, rather than the default list.