zinq
adapts the zinq method for integration with the benchdamic
package.
DA_ZINQ(
object,
pseudo_count = FALSE,
conditions_col,
conditions,
norm = "none",
pval_method,
y_CorD,
verbose = FALSE
)
A (Tree)SummarizedExperiment or a phyloseq object.
Whether include or not a pseudo_count. Default = FALSE.
The name of the grouping column, which is located in the colData (SummarizedExperiment) or the sample_data (phyloseq).
A character vector indicating the conditions. Example:
c(condB = 'control', condA = 'treatment')
A character string indicating the normalization method to be used prior analysis. Default is 'none'.
A character string indicating the type of pvalue to use. Options: Cauchy or MinP. Default: Cauchy.
Indicate if data are counts 'D' or continuous 'C'.
Whether include messages or not. Default is FALSE.
A list in the format used in the benhcdamic pipeline.
Ling, W., Zhao, N., Plantinga, A.M. et al. Powerful and robust non-parametric association testing for microbiome data via a zero-inflated quantile approach (ZINQ). Microbiome 9, 181 (2021). https://doi.org/10.1186/s40168-021-01129-3