Introduction

In this vignette, several differential abundance (DA) methods will be compared using the Ravel_2011_16S_BV dataset. Lactobacillus is expected to be enriched in healthy vagina (HV) samples and other taxa, such as Gardnerella and Prevotella, are expected to be more abundant or enriched in bacterial vaginosis (BV) samples.

Data

Import, summarize by genus, and filter

  • Select equal number of samples per ethnicity group. This was based on the minimum number of samples in an ethnicity.
  • Summarize (agglomerate) by genus.
dat_name <- 'Ravel_2011_16S_BV'
conditions_col <- 'study_condition'
conditions <- c(condB = 'healthy', condA = 'bacterial_vaginosis')

tse <- getBenchmarkData(dat_name, dryrun = FALSE)[[1]]

## Select equal number of samples per ethnicity group
col_data <- tse |> 
    colData() |> 
    as.data.frame() |>
    dplyr::filter(study_condition %in% conditions)
row_names_list <- col_data |>
    {\(y) split(y, factor(y$ethnicity))}() |>
    {\(y) map(y, ~split(.x, .x$study_condition))}() |>
    unlist(recursive = FALSE) |>
    map(rownames)
min_n <- row_names_list |>
    map_int(length) |>
    min()
set.seed(4567)
select_samples <- row_names_list |>
    {\(y) map(y, ~ sample(.x, min_n, replace = FALSE))}() |>
    unlist(use.names = FALSE)
tse_subset <- tse[, select_samples]

## Summarize by genus
tse_genus <- agglomerateByRank(
    tse_subset, rank = 'genus', na.rm = FALSE, onRankOnly = FALSE 
)

## Filter low abundance/presence taxa
tse_genus <- filterTaxa(tse_genus, min_ab = 1, min_per = 0.2)
rownames(tse_genus) <- editMiaTaxaNames(tse_genus)

## Set study conditions in the right order for analysis
colData(tse_genus)$study_condition <- 
    factor(colData(tse_genus)$study_condition, levels = conditions)

tse_genus
## class: TreeSummarizedExperiment 
## dim: 32 80 
## metadata(1): agglomerated_by_rank
## assays(1): counts
## rownames(32): genus:Lactobacillus genus:Prevotella ...
##   genus:Anaeroglobus genus:Bulleidia
## rowData names(7): kingdom class ... species taxon_annotation
## colnames(80): S250 S383 ... S325 S276
## colData names(17): dataset gender ... nugent_score_category
##   community_group
## reducedDimNames(0):
## mainExpName: NULL
## altExpNames(0):
## rowLinks: NULL
## rowTree: NULL
## colLinks: NULL
## colTree: NULL

Get prior info

prior_info <- tse_genus |> 
    rowData() |> 
    as.data.frame() |> 
    dplyr::select(genus, taxon_annotation) |> 
    rename(taxon_name = genus) |> 
    mutate(
        taxon_annotation = case_when(
            is.na(taxon_annotation) ~ "Unannotated",
            TRUE ~ taxon_annotation
        )
    )
head(prior_info)
##                        taxon_name taxon_annotation
## genus:Lactobacillus Lactobacillus    hv-associated
## genus:Prevotella       Prevotella    bv-associated
## genus:Megasphaera     Megasphaera      Unannotated
## genus:Sneathia           Sneathia    bv-associated
## genus:Atopobium         Atopobium    bv-associated
## genus:Streptococcus Streptococcus    bv-associated

Convert to phyloseq

ps <- makePhyloseqFromTreeSummarizedExperiment(tse_genus)
sample_data(ps)[[conditions_col]] <- 
    factor(sample_data(ps)[[conditions_col]], levels = conditions)
ps
## phyloseq-class experiment-level object
## otu_table()   OTU Table:         [ 32 taxa and 80 samples ]
## sample_data() Sample Data:       [ 80 samples by 17 sample variables ]
## tax_table()   Taxonomy Table:    [ 32 taxa by 6 taxonomic ranks ]

Benchdamic workflow

Set DA methods

## Normalization methods supported in benchdamic
norm_methods <- set_norm_list()
# norm_methods <- norm_methods[names(norm_methods) != "norm_CSS"]

ps <- runNormalizations(norm_methods, ps, verbose = FALSE)
zw <- weights_ZINB(ps, design = conditions_col)
DA_methods <- set_DA_methods_list(conditions_col, conditions)

## The following chunk of code was written for compatibility with
## a more recent version of Seurat implemented in benchdamic
for (i in seq_along(DA_methods)) {
    if (grepl("Seurat", names(DA_methods)[i])) {
        names(DA_methods[[i]]$contrast) <- NULL
    } else {
        next
    }
}
# These methods throw an error, so they must be removed
# DA_methods <- DA_methods[!names(DA_methods) == 'DA_ALDEx2.1']
# DA_methods <- DA_methods[!names(DA_methods) == 'DA_corncob.1']
# DA_methods <- DA_methods[!names(DA_methods) == 'DA_edgeR.1']
names(DA_methods)
##  [1] "DA_edgeR.1"         "DA_edgeR.1"         "DA_DESeq2.1"       
##  [4] "DA_DESeq2.1"        "DA_limma.1"         "DA_limma.1"        
##  [7] "DA_metagenomeSeq.1" "DA_ALDEx2.1"        "DA_MAST.1"         
## [10] "DA_Seurat.1"        "ancombc.1"          "wilcox.3"          
## [13] "wilcox.4"           "ZINQ.9"             "ZINQ.10"           
## [16] "lefse.12"           "lefse.13"

Run DA methods

tim <- system.time({
    DA_output <- vector("list", length(DA_methods))
    for (i in seq_along(DA_output)) {
        message(
            "Running method ", i, ": ", names(DA_methods)[i], " - ", Sys.time()
        )
        DA_output[[i]] <- tryCatch(
            error = function(e) NULL,
            runDA(DA_methods[i], ps, weights = zw, verbose = FALSE) 
        )
    }
    DA_output <- purrr::list_flatten(DA_output, name_spec = "{inner}")
    DA_output <- purrr::discard(DA_output, is.null)
})
tim
##    user  system elapsed 
##  13.193   1.583  13.163

Enrichment

Get direction

direction <- get_direction_cols(DA_output, conditions_col, conditions)
head(direction)
##                 edgeR.TMM        edgeR.TMM.weighted          DESeq2.poscounts 
##                   "logFC"                   "logFC"          "log2FoldChange" 
## DESeq2.poscounts.weighted                 limma.TMM        limma.TMM.weighted 
##          "log2FoldChange"                   "logFC"                   "logFC"
hist(abs(DA_output$lefse.CLR$statInfo$LDA_scores))

hist(abs(DA_output$lefse.TSS$statInfo$LDA_scores))

c(
    lefse.TSS = median(DA_output$lefse.TSS$statInfo$abs_score),
    lefse.CLR = median(DA_output$lefse.CLR$statInfo$abs_score)
)
## lefse.TSS lefse.CLR 
## 3.7637102 0.1591164

Create some variables for selecting and ranking differentially abundant features:

adjThr<- rep(0.1, length(DA_output))
names(adjThr) <- names(DA_output)

esThr <- rep(0, length(DA_output))
names(esThr) <- names(DA_output)
esThr[grep("lefse.TSS", names(esThr))] <- 2
esThr[grep("lefse.CLR", names(esThr))] <- 0.15

slotV <- ifelse(grepl("lefse", names(DA_output)), "statInfo", "pValMat")
colNameV <- ifelse(grepl("lefse", names(DA_output)), "LDA_scores", "adjP")
typeV <- ifelse(grepl("lefse", names(DA_output)), "logfc", "pvalue")

Create enrichment. Threshold values is based on adjusted p-values

enrichment <- createEnrichment(
    object = DA_output,
    priorKnowledge = prior_info,
    enrichmentCol = "taxon_annotation",
    namesCol = "taxon_name",
    slot = slotV, colName = colNameV, type = typeV,
    direction = direction,
    threshold_pvalue = adjThr,
    threshold_logfc = esThr,
    top = NULL, # No top feature selected
    alternative = "greater",
    verbose = FALSE 
)

# enrichment <- createEnrichment(
#     object = DA_output,
#     priorKnowledge = prior_info,
#     enrichmentCol = "taxon_annotation",
#     namesCol = "taxon_name",
#     slot = "pValMat", colName = "adjP", type = "pvalue",
#     direction = direction,
#     threshold_pvalue = 0.1,
#     threshold_logfc = 0,
#     top = NULL, 
#     alternative = "greater",
#     verbose = FALSE 
# )

Create enrichment summary:

enrichmentSummary <- purrr::map(enrichment,  ~ {
    .x$summaries |> 
        purrr::map(function(x) {
            pos <- which(colnames(x) != "pvalue")
            x |> 
                tibble::rownames_to_column(var = "direction") |> 
                tidyr::pivot_longer(
                    names_to = "annotation", values_to = "n",
                    cols = 2
                )
                
        }) |> 
        dplyr::bind_rows() |> 
        dplyr::relocate(pvalue)
}) |> 
    dplyr::bind_rows(.id = "method") |> 
    dplyr::mutate(
        sig = dplyr::case_when(
            pvalue < 0.05 & pvalue > 0.01 ~ "*",
            pvalue < 0.01 & pvalue > 0.001 ~ "**",
            pvalue < 0.001 ~ "***",
            TRUE ~ ""
        ) 
    ) |> 
    dplyr::mutate(
        direction = dplyr::case_when(
            direction == "DOWN Abundant" ~ "HV",
            direction == "UP Abundant" ~ "BV",
            TRUE ~ direction 
        )
    )

Create enrichment plot:

enPlot <- enrichmentSummary |> 
    left_join(get_meth_class(), by = "method") |> 
    mutate(
        direction = factor(
            direction, levels = c("BV", "HV")
        )
    ) |> 
    filter(annotation != "Unannotated") |> 
    ggplot(aes(method, n)) +
    geom_col(
        aes(fill = annotation),
        position = position_dodge2(width = 0.9)
    ) +
    geom_text(
        aes(label = sig, color = annotation),
        position = position_dodge2(width = 0.9)
    ) +
    facet_grid(
        direction ~ method_class, scales = "free_x", space = "free"
    ) +
    scale_fill_viridis_d(option = "D", name = "Biological data") +
    scale_color_viridis_d(option = "D", name = "Biological data") +
    labs(
        x = "DA method", y = "Number of DA taxa"
    ) +
    # theme_minimal() +
    theme(
        axis.text.x = element_text(angle = 45, hjust = 1),
        legend.position = "bottom"
    )
# Create enrichment plot
## Not a plot. This is a data.frame that should be used as input for
## the plot_enrichment2 function.
# enrich_plot <- plot_enrichment(
#     enrichment = enrichment, 
#     enrichment_col = "taxon_annotation",
#     levels_to_plot = c("hv-associated", "bv-associated"),
#     conditions = c(condB = "HV", condA = "BV") 
# )

## The actual plot.
# enrich_plot2 <- plot_enrichment_2(
#     enrich_plot,
#     dir = c(up = 'BV', down = 'HV')
# ) +
#     theme(
#         axis.title = element_text(size = 17),
#         axis.text = element_text(size = 15),
#         legend.text = element_text(size = 13),
#         strip.text = element_text(size = 17)
#     )
# enrich_plot2

Plot putative true positves and true negatives ratio

Create ‘positives’ object. No thresholds were added.

positives <- map(1:length(DA_output), .f = function(i) {
    positives <- createPositives(
        object = DA_output[i],
        priorKnowledge = prior_info, 
        enrichmentCol = "taxon_annotation", namesCol = "taxon_name",
        slot = slotV[i], colName = colNameV[i], type = typeV[i],
        direction = direction[i],
        threshold_pvalue = 1,
        threshold_logfc = 0,
        top = seq.int(from = 2, to = 20, by = 2),
        alternative = "greater",
        verbose = FALSE,
        TP = list(c("DOWN Abundant", "hv-associated"), c("UP Abundant", "bv-associated")),
        FP = list(c("DOWN Abundant", "bv-associated"), c("UP Abundant", "hv-associated"))
    ) |> 
        left_join(get_meth_class(), by = 'method')
}) |> bind_rows()








# positives <- createPositives(
#     object = DA_output, 
#     priorKnowledge = prior_info, 
#     enrichmentCol = "taxon_annotation", namesCol = "taxon_name",
#     slot = "pValMat", colName = "rawP", type = "pvalue",
#     direction = direction,
#     threshold_pvalue = 1,
#     threshold_logfc = 0,
#     top = seq.int(from = 0, to = 20, by = 2),
#     alternative = "greater",
#     verbose = FALSE,
#     TP = list(c("DOWN Abundant", "hv-associated"), c("UP Abundant", "bv-associated")),
#     FP = list(c("DOWN Abundant", "bv-associated"), c("UP Abundant", "hv-associated"))
# ) |> 
#     left_join(get_meth_class(), by = 'method') |> 
#     relocate(method_class)

Create putative positives plot

vec <- positives$color
names(vec) <- positives$base_method
posPlot <- positives |> 
    # mutate(diff = jitter(TP - FP, amount = 1.5, factor = 2)) |> 
    mutate(diff = TP - FP) |>
    ggplot(aes(top, diff)) +
    geom_line(
        aes(
            group = method, color = base_method, linetype = norm,
        ),
    ) +
    geom_point(
        aes(
            color = base_method, shape = norm
        ),
    ) +
    facet_wrap(~method_class, nrow = 1) +
    labs(
        x = "Top DA features", y = "TP - FP"
    ) +
    scale_shape(name = "Normalization") +
    scale_linetype(name = "Normalization") +
    scale_color_manual(values = vec, name = "Base method") +
    # theme_minimal() +
    theme(legend.position = "bottom")
# plots <- plot_positives(positives) |> 
#     map( ~ {
#         .x +
#             theme(
#                 axis.title = element_text(size = 17),
#                 axis.text = element_text(size = 15),
#                 legend.text = element_text(size = 13),
#                 strip.text = element_text(size = 17)
#             )
#     })
# k <- grid.arrange(grobs = plots, ncol = 3)
# ePlot <- ggarrange(
#     enrich_plot2, k, ncol = 1, labels = c("a)", "b)"), heights = c(8, 10)
# )
pp <- ggarrange(
    plotlist = list(enPlot, posPlot), ncol = 1, heights = c(1.5, 1)
)
pp

# ggsave(
#     filename = "Figure2.pdf", plot = ePlot,
#     dpi = 300, height = 15, width = 15
# )
ggsave(
    filename = "Figure2.pdf", plot = pp,
    dpi = 300, height = 9, width = 10
)

Perform DA with lefse, Wilcox, and ZINQ-Cauchy manually

tssFun <- function(x) {
    (x) / sum(x) * 100
}
clrFun <- function(x) {
    log(x / exp(mean(log(x))))
}


## Relative abundance (TSS - total sum scaling)
assay(tse_genus, "TSS") <- apply(assay(tse_genus, "counts") + 1, 2, tssFun)
assay(tse_genus, "CLR") <- apply(assay(tse_genus, "counts") + 1, 2, clrFun)
## No need for pseudocount in the next line
assay(tse_genus, "TSS + CLR") <- apply(assay(tse_genus, "TSS"), 2, clrFun)

## CLR transform
# assay(tse_genus, 'CLR') <- apply(assay(tse_genus), 2, function(x) {
#     log((x + 1) / exp(mean(log(x + 1))))
# })

## Relative abundance + CLR transform
# assay(tse_genus, 'TSS + CLR') <- apply(assay(tse_genus, 'TSS'), 2, function(x) {
#     # x / exp(mean(log(x)))
#     log(x / exp(mean(log(x))))
# })

data <- tse_genus |> 
    as_tibble() |> 
    rename(taxon_name = .feature, sample = .sample) |> 
    mutate(
        taxon_annotation = ifelse(
            is.na(taxon_annotation), 'Unannotated', taxon_annotation
        )
    )
head(data)
## # A tibble: 6 × 30
##   taxon_name    sample counts     TSS   CLR `TSS + CLR` dataset gender body_site
##   <chr>         <chr>   <dbl>   <dbl> <dbl>       <dbl> <chr>   <chr>  <chr>    
## 1 genus:Lactob… S250      565 30.6     4.86        4.86 Ravel_… female vagina   
## 2 genus:Prevot… S250      194 10.6     3.80        3.80 Ravel_… female vagina   
## 3 genus:Megasp… S250      677 36.7     5.04        5.04 Ravel_… female vagina   
## 4 genus:Sneath… S250       24  1.35    1.74        1.74 Ravel_… female vagina   
## 5 genus:Atopob… S250      227 12.3     3.95        3.95 Ravel_… female vagina   
## 6 genus:Strept… S250        0  0.0541 -1.48       -1.48 Ravel_… female vagina   
## # ℹ 21 more variables: ncbi_accession <chr>, library_size <dbl>,
## #   sequencing_platform <chr>, pmid <dbl>, study_condition <fct>,
## #   sequencing_method <chr>, variable_region_16s <chr>, country <chr>,
## #   number_bases <dbl>, ethnicity <chr>, ph <dbl>, nugent_score <dbl>,
## #   nugent_score_category <chr>, community_group <chr>, kingdom <chr>,
## #   class <chr>, order <chr>, family <chr>, genus <chr>, species <chr>,
## #   taxon_annotation <chr>

Wilcox

Define function:

calcWilcox <- function(dat, val_col, log = FALSE) {
    
    ## Separate components
    taxa <- split(dat, factor(dat$taxon_name))
    taxa_names <- names(taxa)
    taxa_annotations <- 
        dplyr::distinct(dplyr::select(data, dplyr::starts_with('taxon')))
    
    ## Perform Wilcoxon test 
    pvalues <- vector('double', length(taxa))
    names(pvalues) <- taxa_names 
    formula_chr <- paste0(val_col, ' ~ study_condition')
    for (i in seq_along(pvalues)) {
        df <- taxa[[i]]
        res <- stats::wilcox.test(formula = as.formula(formula_chr), data = df)
        pvalues[[i]] <- res$p.value
    }
    
    ## Adjust P-values
    adj_pvalues <- stats::p.adjust(pvalues, method = 'fdr')
    
    ## Calculate fold change
    log_fold_change <- vector('double', length(taxa))
    lll <- vector('double', length(taxa))
    for (i in seq_along(log_fold_change)) {
        df <- taxa[[i]]
        healthy <- df |> 
            dplyr::filter(study_condition == 'healthy') |> 
            {\(y) y[[val_col]]}()
        bv <- df |> 
            dplyr::filter(study_condition == 'bacterial_vaginosis') |> 
            {\(y) y[[val_col]]}()
        
        bv <- mean(bv)
        healthy <- mean(healthy)
        
        if (log) {
            log_fold_change[i] <- bv - healthy
        } else {
            if (bv >= healthy) { # control is healthy, condition of interest is bv
                 log_fold_change[i] <- log2(bv / healthy)
            } else if (bv < healthy) {
                 log_fold_change[i] <- -log2(healthy / bv)
            }
        }
    }
    
    ## Combine results and annotations
    pval_results <- data.frame(
        taxon_name = taxa_names,
        rawP = pvalues,
        adjP = adj_pvalues,
        logFC = log_fold_change
    )
    
    dplyr::left_join(pval_results, taxa_annotations, by = 'taxon_name')
}

Perform statistical test:

wilcox <- list(
    wilcox_counts = calcWilcox(data, 'counts'),
    wilcox_relab = calcWilcox(data, 'TSS'),
    wilcox_clr = calcWilcox(data, 'CLR', log = TRUE),
    wilcox_relab_clr = calcWilcox(data, 'TSS + CLR', log = TRUE)
) |> 
    bind_rows(.id = 'method')

Filter DA taxa

wilcox_DA <- wilcox |> 
    dplyr::filter(adjP <= 0.1, abs(logFC) > 0) |> 
    mutate(DA = ifelse(logFC > 0, "OA", "UA"))

Plot

wilcox_DA |> 
    dplyr::filter(taxon_annotation != 'Unannotated') |> 
    count(method, taxon_annotation, DA) |> 
    mutate(n = ifelse(DA == 'UA', -n, n)) |> 
    mutate(method = sub('wilcox_', '', method)) |> 
    ggplot(aes(method, n)) + 
    geom_col(aes(fill = taxon_annotation), position = 'dodge') +
    geom_hline(yintercept = 0) +
    labs(
        title = 'Wilcoxon test',
        y = 'Number of DA taxa', x = 'Transformation method' 
    ) 

    # scale_y_continuous(limits = c(-3, 11), breaks = seq(-3, 11, 2))

Plot the abundances of the taxa that were incorrect

incorrect_taxa_wilcox_clr <- wilcox_DA |> 
    dplyr::filter(
        method == 'wilcox_clr', DA == 'UA', 
        taxon_annotation == 'bv-associated'
    ) |> 
    pull(taxon_name)
incorrect_taxa_wilcox_clr
## [1] "genus:Actinomyces"        "genus:Corynebacterium"   
## [3] "genus:Gemella"            "genus:Mobiluncus"        
## [5] "genus:Peptostreptococcus" "genus:Staphylococcus"    
## [7] "genus:Streptococcus"

Let’s plot their values for each matrix

transformations <- c('counts', 'TSS', 'CLR', 'TSS + CLR')
l1 <- vector('list', length(transformations))
names(l1) <- transformations
for (i in seq_along(transformations)) {
    mat <- assay(tse_genus, transformations[i])
    l1[[i]] <- mat[incorrect_taxa_wilcox_clr,] |> 
        as.data.frame() |> 
        tibble::rownames_to_column(var = 'taxon_name') |> 
        as_tibble()
    
}

wilcox_raw <- bind_rows(l1, .id = 'transformation') |> 
    {\(y) pivot_longer(
        y, cols = 3:ncol(y), values_to = 'value', names_to = 'sample'
    )}() |> 
    left_join(data[,c('sample', 'study_condition')], by = 'sample')
## Warning in left_join({: Detected an unexpected many-to-many relationship between `x` and `y`.
##  Row 1 of `x` matches multiple rows in `y`.
##  Row 1 of `y` matches multiple rows in `x`.
##  If a many-to-many relationship is expected, set `relationship =
##   "many-to-many"` to silence this warning.
head(wilcox_raw)
## # A tibble: 6 × 5
##   transformation taxon_name        sample value study_condition    
##   <chr>          <chr>             <chr>  <dbl> <fct>              
## 1 counts         genus:Actinomyces S250       0 bacterial_vaginosis
## 2 counts         genus:Actinomyces S250       0 bacterial_vaginosis
## 3 counts         genus:Actinomyces S250       0 bacterial_vaginosis
## 4 counts         genus:Actinomyces S250       0 bacterial_vaginosis
## 5 counts         genus:Actinomyces S250       0 bacterial_vaginosis
## 6 counts         genus:Actinomyces S250       0 bacterial_vaginosis

Box plot of incorrect values:

wilcox_genus_plot <- wilcox_raw |> 
    mutate(taxon_name = sub('genus:', '', taxon_name)) |>
    mutate(
        value = case_when(
            transformation %in% c("counts", "TSS") ~ log(value + 1),
            TRUE ~ value
        )
    ) |> 
    # mutate(value = log(value + 1)) |> 
    filter(transformation != "TSS + CLR") |> 
    mutate(transformation = factor(
        transformation, levels = c('counts', 'TSS', 'CLR'),
        labels = c('log(counts + 1)', 'log(TSS + 1)', 'CLR')
        # transformation, levels = c('counts', 'TSS', 'CLR', 'TSS + CLR' ),
        # labels = c('log(counts + 1)', 'log(TSS + 1)', 'CLR', 'TSS + CLR')
    )) |> 
    mutate(study_condition = factor(
        study_condition, levels = c('healthy', 'bacterial_vaginosis'),
        labels = c('HV', 'BV')
    )) |> 
    ggplot(aes(taxon_name, value)) + 
    geom_boxplot(aes(color = study_condition)) +
    facet_wrap(~ transformation, scales = 'free') +
    labs(
        y = 'Abundance values', x = 'Genus'
    ) +
    scale_color_manual(
        values = c('dodgerblue1', 'firebrick1')
    ) +
    theme_bw() +
    theme(
        panel.grid.major.x = element_blank(),
        legend.title = element_blank(),
        axis.text.x = element_text(angle = 45, hjust = 1)
    )
## Warning: There was 1 warning in `mutate()`.
##  In argument: `value = case_when(...)`.
## Caused by warning in `log()`:
## ! NaNs produced
wilcox_genus_plot

ggsave(
    file = "Figure3.pdf", plot = wilcox_genus_plot,
    dpi = 300, width = 9, height = 4
)
stats <- data |> 
    mutate(taxon_name = sub('genus:', '', taxon_name)) |> 
    filter(taxon_name %in% c('Actinomyces', 'Corynebacterium')) |> 
    group_by(study_condition, taxon_name) |> 
    summarise(
        mean_counts = mean(counts),
        sd_counts = sd(counts),
        median_counts = median(counts),
        
        mean_TSS = mean(TSS),
        sd_TSS = sd(TSS),
        median_TSS = median(TSS),
        
        mean_CLR = mean(CLR),
        sd_CLR = sd(CLR),
        median_CLR = median(CLR),
        
        mean_TSS_CLR = mean(`TSS + CLR`),
        sd_TSS_CLR = sd(`TSS + CLR`),
        median_TSS_CLR = median(`TSS + CLR`)
    ) |> 
    ungroup() |> 
    arrange(taxon_name) |> 
    modify_if(.p = is.numeric, .f = ~ round(.x, 2)) |> 
    select(-starts_with("median"))
stats
## # A tibble: 4 × 10
##   study_condition     taxon_name  mean_counts sd_counts mean_TSS sd_TSS mean_CLR
##   <fct>               <chr>             <dbl>     <dbl>    <dbl>  <dbl>    <dbl>
## 1 healthy             Actinomyces        0.38      1.66     0.07   0.1     -0.47
## 2 bacterial_vaginosis Actinomyces        2.78      7.78     0.16   0.29    -1.27
## 3 healthy             Corynebact…        6.53     29.1      0.41   1.66    -0.01
## 4 bacterial_vaginosis Corynebact…        9.45     26.3      0.45   1.17    -0.81
## # ℹ 3 more variables: sd_CLR <dbl>, mean_TSS_CLR <dbl>, sd_TSS_CLR <dbl>
types_names <- c("counts$", "TSS$", "[^(TSS)]_CLR$", "TSS_CLR$")
new_stats <- select(stats, taxon_name, study_condition)
for (i in seq_along(types_names)) {
    pos <- grep(types_names[i], colnames(stats), value = TRUE)
    mean_vals <- stats[,grep("mean", pos, value = TRUE), drop = TRUE]
    sd_vals <- stats[,grep("sd", pos, value = TRUE), drop = TRUE]
    new_col_name <- sub("mean_", "", pos[1])
    new_col <- paste0(mean_vals, "\u00B1", sd_vals)
    new_stats[[new_col_name]] <- new_col
}
new_stats <- new_stats |> 
    rename(
        Taxon = taxon_name, Condition = study_condition,
        Counts = counts, `TSS+CLR` = TSS_CLR
    ) |> 
    mutate(
        Condition = case_when(
            Condition == "healthy" ~ "HV",
            Condition == "bacterial_vaginosis" ~ "BV"
        )
    )

new_stats <- new_stats |> 
    pivot_longer(
        names_to = "Data type", values_to = "Value", cols = Counts:last_col()
    ) |> 
    pivot_wider(
        names_from = "Condition", values_from = "Value"
    ) 
    # filter(
    #     `Data type` != "TSS+CLR"
    # )
DT::datatable(
    data = new_stats,
    rownames = FALSE,
    extensions = "Buttons",
    options = list(
        dom = 'Bfrtip',
        buttons = c('copy', 'csv', 'excel', 'pdf', 'print')
  )
)
wilcox |> 
    mutate(
        sig = ifelse(adjP <= 0.1, '*', '')
    ) |> 
    mutate(sig2 = paste0(round(logFC, 2), ' ', sig)) |> 
    mutate(taxon_name = sub('genus:', '', taxon_name)) |>
    mutate(taxon_name = as.factor(taxon_name)) |> 
    filter(taxon_name %in% c('Actinomyces', 'Corynebacterium')) |> 
    ggplot(aes(taxon_name, logFC)) +
    geom_col(aes(fill = method), position = position_dodge(width = 0.9)) +
    geom_text(
        aes(label = sig2, group = method), 
        position = position_dodge(width = 0.9), vjust = -0.5
    ) +
    labs(
        title = 'LogFC of taxa identified as significant (adjP <= 0.1) by CLR',
        subtitle = 'logFC is indicated on top of bars. * means significant'
    )

Lefse

Define a function for running Lefse:

calcLefse <- function(dat, assay) {
    res <- lefser2(
        dat, kruskal.threshold = 0.05, wilcox.threshold = 0.05, 
        lda.threshold = 0, groupCol = 'study_condition', assay = assay
    )
    
    adj_pvalues <- p.adjust(res$kw_pvalues)
    
    dplyr::mutate(res, rawP = kw_pvalues, adjP = adj_pvalues)
    
    # res <- lefser2(
    #     dat, kruskal.threshold = 0.05, wilcox.threshold = 0.05, 
    #     lda.threshold = 0, groupCol = 'study_condition', assay = assay ,
    #     log = log
    # )
    
    ## Add some made up rawP and adjP
    # res |> 
    #     dplyr::mutate(
    #         rawP = kw_pvalues,
    #         adjP = stats::p.adjust(rawP, method = 'fdr')
    #     )
}

Run lefse

taxa_annotations <-
        dplyr::distinct(dplyr::select(data, dplyr::starts_with('taxon')))
lefse <- list(
    lefse_counts = calcLefse(tse_genus, 'counts'),
    lefse_relab = calcLefse(tse_genus, 'TSS'),
    lefse_clr = calcLefse(tse_genus, 'CLR'),
    lefse_relab_clr = calcLefse(tse_genus, 'TSS + CLR')
)  |> 
    bind_rows(.id = 'method') |> 
    mutate(
        DA = ifelse(scores > 0, 'OA', 'UA')
    ) |> 
    rename(taxon_name = 'Names') |> 
    left_join(taxa_annotations, by = 'taxon_name')

head(lefse)
##         method              taxon_name    scores   kw_pvalues         rawP
## 1 lefse_counts  family:Lachnospiraceae 1.8763816 9.489438e-05 9.489438e-05
## 2 lefse_counts family:Oscillospiraceae 1.3522780 1.737376e-06 1.737376e-06
## 3 lefse_counts   family:Prevotellaceae 0.8484845 1.826334e-08 1.826334e-08
## 4 lefse_counts       genus:Actinomyces 0.5818304 2.016389e-03 2.016389e-03
## 5 lefse_counts        genus:Aerococcus 1.4862201 7.902396e-07 7.902396e-07
## 6 lefse_counts      genus:Anaerococcus 1.5128520 1.849079e-07 1.849079e-07
##           adjP DA taxon_annotation
## 1 8.540494e-04 OA      Unannotated
## 2 2.432326e-05 OA      Unannotated
## 3 3.835301e-07 OA      Unannotated
## 4 4.322222e-03 OA    bv-associated
## 5 1.185359e-05 OA    bv-associated
## 6 2.958526e-06 OA      Unannotated
lefse_DA <- lefse |> 
    dplyr::filter(adjP <= 0.1, abs(scores) > 0) |> 
    mutate(DA = ifelse(scores > 0, "OA", "UA"))

Plot lefse results:

lefse_DA |> 
    dplyr::filter(taxon_annotation != 'Unannotated') |> 
    count(method, taxon_annotation, DA) |> 
    mutate(n = ifelse(DA == 'UA', -n, n)) |> 
    mutate(method = sub('lefse_', '', method)) |> 
    ggplot(aes(method, n)) + 
    geom_col(aes(fill = taxon_annotation), position = 'dodge') +
    geom_hline(yintercept = 0) +
    labs(
        title = 'LEfSe test',
        y = 'Number of DA taxa', x = 'Transformation method' 
    )

    # scale_y_continuous(limits = c(-3, 11), breaks = seq(-3, 11, 2))
incorrect_taxa_lefse_clr <- lefse_DA |> 
    dplyr::filter(
        method %in% c('lefse_clr', 'lefse_relab_clr'), DA == 'UA', 
        taxon_annotation == 'bv-associated'
    ) |> 
    pull(taxon_name) |> 
    unique()
incorrect_taxa_lefse_clr ## the same as in wilcox.
## [1] "genus:Actinomyces"     "genus:Corynebacterium" "genus:Mobiluncus"     
## [4] "genus:Staphylococcus"  "genus:Streptococcus"

ZINQ

calcZINQ <- function(dat, val_col, y_Cord = 'D', log = FALSE) {
    taxa <- split(dat, dat$taxon_name)
    taxa_names <- names(taxa)
    
    taxa_annotations <-
        dplyr::distinct(dplyr::select(dat, dplyr::starts_with('taxon')))
    
    pvalues <- vector('double', length(taxa))
    names(pvalues) <- taxa_names
    form <- paste0(val_col, ' ~ study_condition')
    for (i in seq_along(pvalues)) {
        df <- taxa[[i]]
        
        res <- tryCatch(
            error = function(e) NULL, {
                ZINQ::ZINQ_tests(
                    formula.logistic = as.formula(form), 
                    formula.quantile = as.formula(form),
                    C = 'study_condition', y_CorD = y_Cord, data = df
                )
            }
        )
        
        if (is.null(res)) {
            pvalues[i] <- NA
        } else {
            pvalues[i] <- ZINQ::ZINQ_combination(res, method = 'Cauchy')
        }

    }
    
    adj_pvalues <- p.adjust(pvalues, method = 'fdr')
    
    log_fold_change <- vector('double', length(taxa))
    for (i in seq_along(log_fold_change)) {
        df <- taxa[[i]]
        healthy <- df |> 
            dplyr::filter(study_condition == 'healthy') |> 
            {\(y) y[[val_col]]}()
        bv <- df |> 
            dplyr::filter(study_condition == 'bacterial_vaginosis') |> 
            {\(y) y[[val_col]]}()
        
        if (log) { # If log, revert with exp
            healthy <- mean(exp(healthy))
            bv <- mean(exp(bv))
        } else{
            healthy <- mean(healthy)
            bv <- mean(bv)
        }
        
        if (bv >= healthy) { # control is healthy, condition of interest is bv
            log_fold_change[i] <- log2(bv / healthy)
        } else if (bv < healthy) {
            log_fold_change[i] <- -log2(healthy / bv)
        }
    }
    
    ## Combine results and annotations
    output <- data.frame(
        taxon_name = taxa_names,
        rawP = pvalues,
        adjP = adj_pvalues,
        logFC = log_fold_change
    )
    
    return(output)
    # dplyr::left_join(output, taxa_annotations, by = 'taxon_name')
    
}

Run ZINQ

zinq <- list(
    zinq_counts = calcZINQ(data, 'counts', y_Cord = 'D'),
    zinq_relab = calcZINQ(data, 'TSS', y_Cord = 'C'),
    zinq_clr = calcZINQ(data, 'CLR', y_Cord = 'C'),
    zinq_relab_clr = calcZINQ(data, 'TSS + CLR', y_Cord = 'C')
) |> 
    bind_rows(.id = 'method') |> 
    mutate(
        DA = ifelse(logFC > 0, 'OA', 'UA')
    ) |> 
    left_join(taxa_annotations, by = 'taxon_name')

zinq_DA <- zinq |> 
    dplyr::filter(adjP <= 0.1, abs(logFC) > 0) |> 
    mutate(DA = ifelse(logFC > 0, "OA", "UA"))

Plot ZINQ results

zinq_plot <- zinq_DA |> 
    dplyr::filter(taxon_annotation != 'Unannotated') |> 
    count(method, taxon_annotation, DA) |> 
    mutate(n = ifelse(DA == 'UA', -n, n)) |> 
    mutate(method = sub('lefse_', '', method)) |> 
    ggplot(aes(method, n)) + 
    geom_col(aes(fill = taxon_annotation), position = 'dodge') +
    geom_hline(yintercept = 0) +
    labs(
        title = 'ZINQ test',
        y = 'Number of DA taxa', x = 'Transformation method' 
    )
    # scale_y_continuous(limits = c(-3, 13), breaks = seq(-3, 13, 2))
zinq_plot

incorrect_taxa_lefse_clr <- zinq_DA |> 
    dplyr::filter(
        method %in% c('zinq_clr', 'zinq_relab_clr'), DA == 'UA', 
        taxon_annotation == 'bv-associated'
    ) |> 
    pull(taxon_name) |> 
    unique()
incorrect_taxa_lefse_clr ## the same as in wilcox.
## [1] "genus:Aerococcus"  "genus:Gardnerella"

ANCOM-BC, MetagenomeSeq, and DESEQ2

ANCOM-BC

ancombc <- as.data.frame(DA_output$ancombc.none$statInfo)
ancombc$taxon_name <- rownames(ancombc)
ancombc <- left_join(ancombc, taxa_annotations, by = "taxon_name") |> 
    relocate(taxon_name, taxon_annotation)
ancombc |> 
    filter(q_val <= 0.1, lfc < 0, taxon_annotation == 'bv-associated') |> 
    pull(taxon_name)
## [1] "genus:Staphylococcus"  "genus:Corynebacterium" "genus:Actinomyces"

MetagenomeSeq

DESEQ2

deseq <- as.data.frame(DA_output$DESeq2.poscounts$statInfo)
deseq$taxon_name <- rownames(deseq)
deseq <- left_join(deseq, taxa_annotations, by = "taxon_name") |> 
    relocate(taxon_name, taxon_annotation)
deseq |> 
    filter(
        padj <= 0.1, log2FoldChange < 0,
           taxon_annotation == 'bv-associated'
    ) |> 
    pull(taxon_name)
## [1] "genus:Staphylococcus"

Plots of BV-associated genera

These are all of the BV-associated bacteria present in the Ravel_2011 dataset. This is independent of any statistical test or effect size calculation.

CLR

data |> 
    filter(taxon_annotation == 'bv-associated') |> 
    mutate(taxon_name = sub("^genus:", "", taxon_name)) |> 
    # mutate(CLR = log(CLR + 1)) |> 
    ggplot(aes(taxon_name, CLR)) +
    geom_boxplot(aes(color = study_condition)) + 
    labs(
        title = 'CLR values of BV-associated bacteria',
        x = 'Genus', y = 'log(CLR)'
    ) +
    theme_bw() + 
    theme(
        axis.text.x = element_text(angle = 45, hjust = 1)
    )

Relative abundance

data |> 
    filter(taxon_annotation == 'bv-associated') |> 
    mutate(taxon_name = sub("^genus:", "", taxon_name)) |> 
    mutate(TSS = log(TSS + 1)) |> 
    ggplot(aes(taxon_name, TSS)) +
    geom_boxplot(aes(color = study_condition)) + 
    labs(title = 'Relative abundance values of BV-associated bacteria',
         y = 'log2(relative abundance)') +
    theme_bw() + 
    theme(
        axis.text.x = element_text(angle = 45, hjust = 1)
    )

Compositions with TSS data

order of taxa

first_set <- data |> 
    filter(
        nugent_score_category == 'low',
        taxon_annotation == 'hv-associated'
    ) |> 
    arrange(desc(TSS)) |> 
    pull(sample)


second_set <- data |> 
    filter(
        nugent_score_category == 'high',
        taxon_annotation == 'hv-associated'
    ) |> 
    arrange(desc(TSS)) |> 
    pull(sample)
samples_order <- c(first_set, second_set)
p1 <- data |> 
    mutate(
        sample = factor(sample, levels = samples_order),
        nugent_score_category = factor(
            nugent_score_category, levels = c('low', 'high'),
            labels = c('Low Nugent score', 'High Nugent score')
        ),
        taxon_annotation = case_when(
            taxon_annotation == "hv-associated" ~ "Health-associated",
            taxon_annotation == "bv-associated" ~ "BV-associated",
            TRUE ~ taxon_annotation
        ),
        taxon_annotation = factor(
            taxon_annotation, levels = c('Health-associated', 'BV-associated', 'Unannotated')[3:1]
        )
    ) |>
    ggplot(aes(sample, TSS )) +
    geom_col(aes(fill = taxon_annotation)) +
    scale_fill_manual(values = c('gray60', 'firebrick2', 'dodgerblue2')) +
    labs(
        x = "Samples",
        y = "Relative abundance values (TSS)"
    ) +
    facet_wrap(~nugent_score_category, ncol = 2, scales = "free_x") +
    theme_bw() +
    theme(
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        panel.grid = element_blank()
    )
p1

p2 <- data |> 
    mutate(
        sample = factor(sample, levels = samples_order),
        nugent_score_category = factor(
            nugent_score_category, levels = c('low', 'high'),
            labels = c('Low Nugent score', 'High Nugent score')
        ),
        taxon_annotation = case_when(
            taxon_annotation == "hv-associated" ~ "Health-associated",
            taxon_annotation == "bv-associated" ~ "BV-associated",
            TRUE ~ taxon_annotation
        ),
        taxon_annotation = factor(
            taxon_annotation, levels = c('Health-associated', 'BV-associated', 'Unannotated')[3:1]
        )
    ) |>
    ggplot(aes(sample, exp(CLR))) +
    geom_col(aes(fill = taxon_annotation)) +
    scale_fill_manual(values = c('gray60', 'firebrick2', 'dodgerblue2')) +
    labs(
        x = "Samples",
        y = "Geometric mean normalization (exp(CLR))"
    ) +
    facet_wrap(~nugent_score_category, ncol = 2, scales = "free_x") +
    theme_bw() +
    theme(
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        panel.grid = element_blank()
    )
p2

Distributions

Get Latobacillus relative abundance per sample

sample_sizes <- filter(data, taxon_name == 'genus:Lactobacillus') |> 
    select(sample, lact_tss = TSS, lact_clr = CLR)
data_with_lact <- left_join(data, sample_sizes, by = 'sample')

Relative abundance vs CLR all taxa

data_with_lact |> 
    ggplot(aes(log(TSS + 1), CLR)) +
    geom_point(
        aes(color = study_condition, size = lact_tss), 
        alpha = 0.3, position = 'jitter'
    ) + 
    labs(
        title = 'Relative abundace vs CLR per genus',
        x = 'log(TSS + 1)'
    ) +
    theme_bw()

Relative abundance vs CLR BV-associated

data_with_lact |> 
    filter(taxon_annotation == 'bv-associated') |> 
    ggplot(aes(log(TSS + 1), CLR)) +
    geom_point(
        aes(color = study_condition, size = lact_tss), 
        alpha = 0.3, position = 'jitter'
    ) + 
    labs(
        title = 'Relative abundace vs CLR',
        subtitle = 'BV-associated genera only',
        x = 'log(TSS + 1)'
    ) +
    scale_size(name = 'Lactobacillus Rel. Ab.') +
    theme_bw()

Plotting log(CLR) vs log(Relab) of Lactobacillus, Prevotella, Actinomyces, and Corynebacterium.

plot_1b <- data_with_lact |> 
    filter(taxon_name == 'genus:Actinomyces') |> 
    mutate(
        study_condition = factor(
            study_condition, levels = c('bacterial_vaginosis', 'healthy'),
            labels = c('BV', 'HV')
        )
    ) |> 
    ggplot(aes(log(TSS + 1), CLR)) +
    geom_point(
        aes(color = study_condition, size = lact_tss), 
        alpha = 0.3
    ) + 
    labs(
        # title = 'Relative abundace vs CLR',
        title = 'Actinomyces (BV-associated)',
        x = 'log(TSS + 1)'
    ) +
    scale_color_discrete(name = 'Condition') +
    scale_size(name = 'Lactobacillus Rel. Ab.') +
    theme_bw()

plot_2b <- data_with_lact |> 
    filter(taxon_name == 'genus:Corynebacterium') |> 
    mutate(
        study_condition = factor(
            study_condition, levels = c('bacterial_vaginosis', 'healthy'),
            labels = c('BV', 'HV')
        )
    ) |> 
    ggplot(aes(log(TSS + 1), CLR)) +
    geom_point(
        aes(color = study_condition, size = lact_tss), 
        alpha = 0.3
    ) + 
    labs(
        # title = 'Relative abundace vs CLR',
        title = 'Corynebacterium (BV-associated)',
        x = 'log(TSS + 1)'
    ) +
    scale_color_discrete(name = 'Condition') +
    scale_size(name = 'Lactobacillus Rel. Ab.') +
    theme_bw()

plot_3b <- data_with_lact |> 
    filter(taxon_name == 'genus:Prevotella') |> 
    mutate(
        study_condition = factor(
            study_condition, levels = c('bacterial_vaginosis', 'healthy'),
            labels = c('BV', 'HV')
        )
    ) |> 
    ggplot(aes(log(TSS + 1), CLR)) +
    geom_point(
        aes(color = study_condition, size = lact_tss), 
        alpha = 0.3
    ) + 
    labs(
        # title = 'Relative abundace vs CLR',
        title = 'Prevotella (BV-associated)',
        x = 'log(TSS + 1)'
    ) +
    scale_color_discrete(name = 'Condition') +
    scale_size(name = 'Lactobacillus Rel. Ab.') +
    theme_bw()

plot_4b <- data_with_lact |> 
    filter(taxon_name == 'genus:Lactobacillus') |> 
    mutate(
        study_condition = factor(
            study_condition, levels = c('bacterial_vaginosis', 'healthy'),
            labels = c('BV', 'HV')
        )
    ) |> 
    ggplot(aes(log(TSS + 1), CLR)) +
    geom_point(
        aes(color = study_condition, size = lact_tss), 
        alpha = 0.3
    ) + 
    labs(
        # title = 'Relative abundace vs CLR',
        title = 'Lactobacillus (HV)',
        x = 'log(TSS + 1)'
    ) +
    scale_color_discrete(name = 'Condition') +
    scale_size(name = 'Lactobacillus Rel. Ab.') +
    theme_bw()

plotsb <- ggpubr::ggarrange(
    plot_4b, plot_3b, plot_1b, plot_2b, align = 'hv',
    common.legend = TRUE, legend = 'bottom', 
    labels = c('a)', 'b)', 'c)', 'd)')
) 
plotsb

Session info

sessioninfo::session_info()
## ─ Session info ───────────────────────────────────────────────────────────────
##  setting  value
##  version  R version 4.4.1 (2024-06-14)
##  os       Ubuntu 22.04.4 LTS
##  system   x86_64, linux-gnu
##  ui       X11
##  language en
##  collate  en_US.UTF-8
##  ctype    en_US.UTF-8
##  tz       Etc/UTC
##  date     2024-09-24
##  pandoc   3.2 @ /usr/bin/ (via rmarkdown)
## 
## ─ Packages ───────────────────────────────────────────────────────────────────
##  package                         * version    date (UTC) lib source
##  abind                             1.4-8      2024-09-12 [1] RSPM (R 4.4.0)
##  ade4                              1.7-22     2023-02-06 [1] RSPM (R 4.4.0)
##  ALDEx2                            1.36.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  ANCOMBC                           2.6.0      2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  annotate                          1.82.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  AnnotationDbi                     1.66.0     2024-05-01 [1] Bioconductor 3.19 (R 4.4.1)
##  ape                               5.8        2024-04-11 [1] RSPM (R 4.4.0)
##  backports                         1.5.0      2024-05-23 [1] RSPM (R 4.4.0)
##  base64enc                         0.1-3      2015-07-28 [1] RSPM (R 4.4.0)
##  beachmat                          2.20.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  beeswarm                          0.4.0      2021-06-01 [1] RSPM (R 4.4.0)
##  benchdamic                      * 1.11.1     2024-09-24 [1] Github (mcalgaro93/benchdamic@7686034)
##  biglm                             0.9-3      2024-06-12 [1] RSPM (R 4.4.0)
##  Biobase                         * 2.64.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  BiocFileCache                     2.12.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  BiocGenerics                    * 0.50.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  BiocNeighbors                     1.22.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  BiocParallel                      1.38.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  BiocSingular                      1.20.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  biomformat                        1.32.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  Biostrings                      * 2.72.1     2024-06-02 [1] Bioconductor 3.19 (R 4.4.1)
##  bit                               4.5.0      2024-09-20 [1] RSPM (R 4.4.0)
##  bit64                             4.5.2      2024-09-22 [1] RSPM (R 4.4.0)
##  bitops                            1.0-8      2024-07-29 [1] RSPM (R 4.4.0)
##  blob                              1.2.4      2023-03-17 [1] RSPM (R 4.4.0)
##  bluster                           1.14.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  boot                              1.3-30     2024-02-26 [2] CRAN (R 4.4.1)
##  broom                             1.0.6      2024-05-17 [1] RSPM (R 4.4.0)
##  bslib                             0.8.0      2024-07-29 [1] RSPM (R 4.4.0)
##  cachem                            1.1.0      2024-05-16 [1] RSPM (R 4.4.0)
##  car                               3.1-2      2023-03-30 [1] RSPM (R 4.4.0)
##  carData                           3.0-5      2022-01-06 [1] RSPM (R 4.4.0)
##  caTools                           1.18.3     2024-09-04 [1] RSPM (R 4.4.0)
##  cellranger                        1.1.0      2016-07-27 [1] RSPM (R 4.4.0)
##  checkmate                         2.3.2      2024-07-29 [1] RSPM (R 4.4.0)
##  class                             7.3-22     2023-05-03 [2] CRAN (R 4.4.1)
##  cli                               3.6.3      2024-06-21 [1] RSPM (R 4.4.0)
##  clue                              0.3-65     2023-09-23 [1] RSPM (R 4.4.0)
##  cluster                           2.1.6      2023-12-01 [2] CRAN (R 4.4.1)
##  codetools                         0.2-20     2024-03-31 [2] CRAN (R 4.4.1)
##  coin                              1.4-3      2023-09-27 [1] RSPM (R 4.4.0)
##  colorspace                        2.1-1      2024-07-26 [1] RSPM (R 4.4.0)
##  CompQuadForm                      1.4.3      2017-04-12 [1] RSPM (R 4.4.0)
##  corncob                           0.4.1      2024-01-10 [1] RSPM (R 4.4.0)
##  corpcor                           1.6.10     2021-09-16 [1] RSPM (R 4.4.0)
##  cowplot                           1.1.3      2024-01-22 [1] RSPM (R 4.4.0)
##  crayon                            1.5.3      2024-06-20 [1] RSPM (R 4.4.0)
##  crosstalk                         1.2.1      2023-11-23 [1] RSPM (R 4.4.0)
##  curl                              5.2.3      2024-09-20 [1] RSPM (R 4.4.0)
##  CVXR                              1.0-14     2024-06-27 [1] RSPM (R 4.4.0)
##  data.table                        1.16.0     2024-08-27 [1] RSPM (R 4.4.0)
##  DBI                               1.2.3      2024-06-02 [1] RSPM (R 4.4.0)
##  dbplyr                            2.5.0      2024-03-19 [1] RSPM (R 4.4.0)
##  dearseq                           1.16.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  DECIPHER                          3.0.0      2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  decontam                          1.24.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  DelayedArray                      0.30.1     2024-05-07 [1] Bioconductor 3.19 (R 4.4.1)
##  DelayedMatrixStats                1.26.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  deldir                            2.0-4      2024-02-28 [1] RSPM (R 4.4.0)
##  DEoptimR                          1.1-3      2023-10-07 [1] RSPM (R 4.4.0)
##  desc                              1.4.3      2023-12-10 [1] RSPM (R 4.4.0)
##  DescTools                         0.99.56    2024-08-22 [1] RSPM (R 4.4.0)
##  DESeq2                            1.44.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  digest                            0.6.37     2024-08-19 [1] RSPM (R 4.4.0)
##  directlabels                      2024.1.21  2024-01-24 [1] RSPM (R 4.4.0)
##  DirichletMultinomial              1.46.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  doParallel                        1.0.17     2022-02-07 [1] RSPM (R 4.4.0)
##  doRNG                           * 1.8.6      2023-01-16 [1] RSPM (R 4.4.0)
##  dotCall64                         1.1-1      2023-11-28 [1] RSPM (R 4.4.0)
##  dplyr                           * 1.1.4      2023-11-17 [1] RSPM (R 4.4.0)
##  DT                                0.33       2024-04-04 [1] RSPM (R 4.4.0)
##  e1071                             1.7-16     2024-09-16 [1] RSPM (R 4.4.0)
##  edgeR                             4.2.1      2024-07-14 [1] Bioconductor 3.19 (R 4.4.1)
##  ellipse                           0.5.0      2023-07-20 [1] RSPM (R 4.4.0)
##  ellipsis                          0.3.2      2021-04-29 [1] RSPM (R 4.4.0)
##  energy                            1.7-12     2024-08-24 [1] RSPM (R 4.4.0)
##  evaluate                          1.0.0      2024-09-17 [1] RSPM (R 4.4.0)
##  Exact                             3.3        2024-07-21 [1] RSPM (R 4.4.0)
##  expm                              1.0-0      2024-08-19 [1] RSPM (R 4.4.0)
##  fansi                             1.0.6      2023-12-08 [1] RSPM (R 4.4.0)
##  farver                            2.1.2      2024-05-13 [1] RSPM (R 4.4.0)
##  fastDummies                       1.7.4      2024-08-16 [1] RSPM (R 4.4.0)
##  fastmap                           1.2.0      2024-05-15 [1] RSPM (R 4.4.0)
##  fBasics                           4041.97    2024-08-19 [1] RSPM (R 4.4.0)
##  filelock                          1.0.3      2023-12-11 [1] RSPM (R 4.4.0)
##  fitdistrplus                      1.2-1      2024-07-12 [1] RSPM (R 4.4.0)
##  foreach                         * 1.5.2      2022-02-02 [1] RSPM (R 4.4.0)
##  foreign                           0.8-86     2023-11-28 [2] CRAN (R 4.4.1)
##  Formula                           1.2-5      2023-02-24 [1] RSPM (R 4.4.0)
##  formula.tools                     1.7.1      2018-03-01 [1] RSPM (R 4.4.0)
##  fs                                1.6.4      2024-04-25 [1] RSPM (R 4.4.0)
##  future                            1.34.0     2024-07-29 [1] RSPM (R 4.4.0)
##  future.apply                      1.11.2     2024-03-28 [1] RSPM (R 4.4.0)
##  genefilter                        1.86.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  generics                          0.1.3      2022-07-05 [1] RSPM (R 4.4.0)
##  GenomeInfoDb                    * 1.40.1     2024-05-24 [1] Bioconductor 3.19 (R 4.4.1)
##  GenomeInfoDbData                  1.2.12     2024-06-25 [1] Bioconductor
##  GenomicRanges                   * 1.56.1     2024-06-12 [1] Bioconductor 3.19 (R 4.4.1)
##  getopt                            1.20.4     2023-10-01 [1] RSPM (R 4.4.0)
##  ggbeeswarm                        0.7.2      2023-04-29 [1] RSPM (R 4.4.0)
##  ggdendro                          0.2.0      2024-02-23 [1] RSPM (R 4.4.0)
##  ggplot2                         * 3.5.1      2024-04-23 [1] RSPM (R 4.4.0)
##  ggpubr                          * 0.6.0      2023-02-10 [1] RSPM (R 4.4.0)
##  ggrepel                           0.9.6      2024-09-07 [1] RSPM (R 4.4.0)
##  ggridges                          0.5.6      2024-01-23 [1] RSPM (R 4.4.0)
##  ggsignif                          0.6.4      2022-10-13 [1] RSPM (R 4.4.0)
##  gld                               2.6.6      2022-10-23 [1] RSPM (R 4.4.0)
##  glmnet                            4.1-8      2023-08-22 [1] RSPM (R 4.4.0)
##  globals                           0.16.3     2024-03-08 [1] RSPM (R 4.4.0)
##  glue                              1.7.0      2024-01-09 [1] RSPM (R 4.4.0)
##  gmp                               0.7-5      2024-08-23 [1] RSPM (R 4.4.0)
##  goftest                           1.2-3      2021-10-07 [1] RSPM (R 4.4.0)
##  gplots                            3.1.3.1    2024-02-02 [1] RSPM (R 4.4.0)
##  gridExtra                       * 2.3        2017-09-09 [1] RSPM (R 4.4.0)
##  gsl                               2.1-8      2023-01-24 [1] RSPM (R 4.4.0)
##  gtable                            0.3.5      2024-04-22 [1] RSPM (R 4.4.0)
##  gtools                            3.9.5      2023-11-20 [1] RSPM (R 4.4.0)
##  GUniFrac                          1.8        2023-09-14 [1] RSPM (R 4.4.0)
##  highr                             0.11       2024-05-26 [1] RSPM (R 4.4.0)
##  Hmisc                             5.1-3      2024-05-28 [1] RSPM (R 4.4.0)
##  hms                               1.1.3      2023-03-21 [1] RSPM (R 4.4.0)
##  htmlTable                         2.4.3      2024-07-21 [1] RSPM (R 4.4.0)
##  htmltools                         0.5.8.1    2024-04-04 [1] RSPM (R 4.4.0)
##  htmlwidgets                       1.6.4      2023-12-06 [1] RSPM (R 4.4.0)
##  httpuv                            1.6.15     2024-03-26 [1] RSPM (R 4.4.0)
##  httr                              1.4.7      2023-08-15 [1] RSPM (R 4.4.0)
##  ica                               1.0-3      2022-07-08 [1] RSPM (R 4.4.0)
##  igraph                            2.0.3      2024-03-13 [1] RSPM (R 4.4.0)
##  inline                            0.3.19     2021-05-31 [1] RSPM (R 4.4.0)
##  interp                            1.1-6      2024-01-26 [1] RSPM (R 4.4.0)
##  IRanges                         * 2.38.1     2024-07-03 [1] Bioconductor 3.19 (R 4.4.1)
##  irlba                             2.3.5.1    2022-10-03 [1] RSPM (R 4.4.0)
##  iterators                         1.0.14     2022-02-05 [1] RSPM (R 4.4.0)
##  janeaustenr                       1.0.0      2022-08-26 [1] RSPM (R 4.4.0)
##  jomo                              2.7-6      2023-04-15 [1] RSPM (R 4.4.0)
##  jpeg                              0.1-10     2022-11-29 [1] RSPM (R 4.4.0)
##  jquerylib                         0.1.4      2021-04-26 [1] RSPM (R 4.4.0)
##  jsonlite                          1.8.9      2024-09-20 [1] RSPM (R 4.4.0)
##  KEGGREST                          1.44.1     2024-06-19 [1] Bioconductor 3.19 (R 4.4.1)
##  KernSmooth                        2.23-24    2024-05-17 [2] CRAN (R 4.4.1)
##  knitr                             1.48       2024-07-07 [1] RSPM (R 4.4.0)
##  labeling                          0.4.3      2023-08-29 [1] RSPM (R 4.4.0)
##  later                             1.3.2      2023-12-06 [1] RSPM (R 4.4.0)
##  lattice                           0.22-6     2024-03-20 [2] CRAN (R 4.4.1)
##  latticeExtra                      0.6-30     2022-07-04 [1] RSPM (R 4.4.0)
##  lazyeval                          0.2.2      2019-03-15 [1] RSPM (R 4.4.0)
##  lefser                            1.14.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  leiden                            0.4.3.1    2023-11-17 [1] RSPM (R 4.4.0)
##  libcoin                           1.0-10     2023-09-27 [1] RSPM (R 4.4.0)
##  lifecycle                         1.0.4      2023-11-07 [1] RSPM (R 4.4.0)
##  limma                             3.60.4     2024-07-17 [1] Bioconductor 3.19 (R 4.4.1)
##  listenv                           0.9.1      2024-01-29 [1] RSPM (R 4.4.0)
##  lme4                              1.1-35.5   2024-07-03 [1] RSPM (R 4.4.0)
##  lmerTest                          3.1-3      2020-10-23 [1] RSPM (R 4.4.0)
##  lmom                              3.0        2023-08-29 [1] RSPM (R 4.4.0)
##  lmtest                            0.9-40     2022-03-21 [1] RSPM (R 4.4.0)
##  locfit                            1.5-9.10   2024-06-24 [1] RSPM (R 4.4.0)
##  logistf                           1.26.0     2023-08-18 [1] RSPM (R 4.4.0)
##  Maaslin2                          1.18.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  magrittr                          2.0.3      2022-03-30 [1] RSPM (R 4.4.0)
##  MASS                              7.3-61     2024-06-13 [2] RSPM (R 4.4.0)
##  MAST                              1.30.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  Matrix                            1.7-0      2024-04-26 [2] CRAN (R 4.4.1)
##  MatrixGenerics                  * 1.16.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  MatrixModels                      0.5-3      2023-11-06 [1] RSPM (R 4.4.0)
##  matrixStats                     * 1.4.1      2024-09-08 [1] RSPM (R 4.4.0)
##  memoise                           2.0.1      2021-11-26 [1] RSPM (R 4.4.0)
##  metagenomeSeq                     1.46.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  mgcv                              1.9-1      2023-12-21 [2] CRAN (R 4.4.1)
##  MGLM                              0.2.1      2022-04-13 [1] RSPM (R 4.4.0)
##  mia                             * 1.12.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  mice                              3.16.0     2023-06-05 [1] RSPM (R 4.4.0)
##  microbiome                        1.26.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  MicrobiomeBenchmarkData         * 1.6.0      2024-05-02 [1] Bioconductor 3.19 (R 4.4.1)
##  MicrobiomeBenchmarkDataAnalyses * 0.99.11    2024-09-24 [1] local
##  MicrobiomeStat                    1.2        2024-04-01 [1] RSPM (R 4.4.0)
##  mime                              0.12       2021-09-28 [1] RSPM (R 4.4.0)
##  miniUI                            0.1.1.1    2018-05-18 [1] RSPM (R 4.4.0)
##  minqa                             1.2.8      2024-08-17 [1] RSPM (R 4.4.0)
##  mitml                             0.4-5      2023-03-08 [1] RSPM (R 4.4.0)
##  mitools                           2.4        2019-04-26 [1] RSPM (R 4.4.0)
##  mixOmics                          6.28.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  modeest                           2.4.0      2019-11-18 [1] RSPM (R 4.4.0)
##  modeltools                        0.2-23     2020-03-05 [1] RSPM (R 4.4.0)
##  multcomp                          1.4-26     2024-07-18 [1] RSPM (R 4.4.0)
##  MultiAssayExperiment            * 1.30.3     2024-07-10 [1] Bioconductor 3.19 (R 4.4.1)
##  multtest                          2.60.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  munsell                           0.5.1      2024-04-01 [1] RSPM (R 4.4.0)
##  mvtnorm                           1.3-1      2024-09-03 [1] RSPM (R 4.4.0)
##  NADA                              1.6-1.1    2020-03-22 [1] RSPM (R 4.4.0)
##  nlme                              3.1-165    2024-06-06 [2] RSPM (R 4.4.0)
##  nloptr                            2.1.1      2024-06-25 [1] RSPM (R 4.4.0)
##  nnet                              7.3-19     2023-05-03 [2] CRAN (R 4.4.1)
##  NOISeq                            2.48.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  numDeriv                          2016.8-1.1 2019-06-06 [1] RSPM (R 4.4.0)
##  operator.tools                    1.6.3      2017-02-28 [1] RSPM (R 4.4.0)
##  optparse                          1.7.5      2024-04-16 [1] RSPM (R 4.4.0)
##  pan                               1.9        2023-12-07 [1] RSPM (R 4.4.0)
##  parallelly                        1.38.0     2024-07-27 [1] RSPM (R 4.4.0)
##  patchwork                         1.3.0      2024-09-16 [1] RSPM (R 4.4.0)
##  pbapply                           1.7-2      2023-06-27 [1] RSPM (R 4.4.0)
##  pcaPP                             2.0-5      2024-08-19 [1] RSPM (R 4.4.0)
##  permute                           0.9-7      2022-01-27 [1] RSPM (R 4.4.0)
##  phyloseq                        * 1.48.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  pillar                            1.9.0      2023-03-22 [1] RSPM (R 4.4.0)
##  pkgconfig                         2.0.3      2019-09-22 [1] RSPM (R 4.4.0)
##  pkgdown                           2.1.1      2024-09-17 [1] RSPM (R 4.4.0)
##  plotly                            4.10.4     2024-01-13 [1] RSPM (R 4.4.0)
##  plyr                              1.8.9      2023-10-02 [1] RSPM (R 4.4.0)
##  png                               0.1-8      2022-11-29 [1] RSPM (R 4.4.0)
##  polyclip                          1.10-7     2024-07-23 [1] RSPM (R 4.4.0)
##  prettyunits                       1.2.0      2023-09-24 [1] RSPM (R 4.4.0)
##  progress                          1.2.3      2023-12-06 [1] RSPM (R 4.4.0)
##  progressr                         0.14.0     2023-08-10 [1] RSPM (R 4.4.0)
##  promises                          1.3.0      2024-04-05 [1] RSPM (R 4.4.0)
##  proxy                             0.4-27     2022-06-09 [1] RSPM (R 4.4.0)
##  purrr                           * 1.0.2      2023-08-10 [1] RSPM (R 4.4.0)
##  quadprog                          1.5-8      2019-11-20 [1] RSPM (R 4.4.0)
##  quantreg                          5.98       2024-05-26 [1] RSPM (R 4.4.0)
##  R6                                2.5.1      2021-08-19 [1] RSPM (R 4.4.0)
##  ragg                              1.3.3      2024-09-11 [1] RSPM (R 4.4.0)
##  RANN                              2.6.2      2024-08-25 [1] RSPM (R 4.4.0)
##  rARPACK                           0.11-0     2016-03-10 [1] RSPM (R 4.4.0)
##  rbibutils                         2.2.16     2023-10-25 [1] RSPM (R 4.4.0)
##  RColorBrewer                      1.1-3      2022-04-03 [1] RSPM (R 4.4.0)
##  Rcpp                              1.0.13     2024-07-17 [1] RSPM (R 4.4.0)
##  RcppAnnoy                         0.0.22     2024-01-23 [1] RSPM (R 4.4.0)
##  RcppHNSW                          0.6.0      2024-02-04 [1] RSPM (R 4.4.0)
##  RcppParallel                      5.1.9      2024-08-19 [1] RSPM (R 4.4.0)
##  RcppZiggurat                      0.1.6      2020-10-20 [1] RSPM (R 4.4.0)
##  Rdpack                            2.6.1      2024-08-06 [1] RSPM (R 4.4.0)
##  readxl                            1.4.3      2023-07-06 [1] RSPM (R 4.4.0)
##  reshape2                          1.4.4      2020-04-09 [1] RSPM (R 4.4.0)
##  reticulate                        1.39.0     2024-09-05 [1] RSPM (R 4.4.0)
##  Rfast                             2.1.0      2023-11-09 [1] RSPM (R 4.4.0)
##  rhdf5                             2.48.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  rhdf5filters                      1.16.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  Rhdf5lib                          1.26.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  rlang                             1.1.4      2024-06-04 [1] RSPM (R 4.4.0)
##  rmarkdown                         2.28       2024-08-17 [1] RSPM (R 4.4.0)
##  Rmpfr                             0.9-5      2024-01-21 [1] RSPM (R 4.4.0)
##  rmutil                            1.1.10     2022-10-27 [1] RSPM (R 4.4.0)
##  rngtools                        * 1.5.2      2021-09-20 [1] RSPM (R 4.4.0)
##  robustbase                        0.99-4     2024-08-19 [1] RSPM (R 4.4.0)
##  ROCR                              1.0-11     2020-05-02 [1] RSPM (R 4.4.0)
##  rootSolve                         1.8.2.4    2023-09-21 [1] RSPM (R 4.4.0)
##  rpart                             4.1.23     2023-12-05 [2] CRAN (R 4.4.1)
##  RSpectra                          0.16-2     2024-07-18 [1] RSPM (R 4.4.0)
##  RSQLite                           2.3.7      2024-05-27 [1] RSPM (R 4.4.0)
##  rstatix                           0.7.2      2023-02-01 [1] RSPM (R 4.4.0)
##  rstudioapi                        0.16.0     2024-03-24 [1] RSPM (R 4.4.0)
##  rsvd                              1.0.5      2021-04-16 [1] RSPM (R 4.4.0)
##  Rtsne                             0.17       2023-12-07 [1] RSPM (R 4.4.0)
##  S4Arrays                          1.4.1      2024-05-20 [1] Bioconductor 3.19 (R 4.4.1)
##  S4Vectors                       * 0.42.1     2024-07-03 [1] Bioconductor 3.19 (R 4.4.1)
##  sandwich                          3.1-1      2024-09-15 [1] RSPM (R 4.4.0)
##  sass                              0.4.9      2024-03-15 [1] RSPM (R 4.4.0)
##  ScaledMatrix                      1.12.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  scales                            1.3.0      2023-11-28 [1] RSPM (R 4.4.0)
##  scater                            1.32.1     2024-07-21 [1] Bioconductor 3.19 (R 4.4.1)
##  scattermore                       1.2        2023-06-12 [1] RSPM (R 4.4.0)
##  sctransform                       0.4.1      2023-10-19 [1] RSPM (R 4.4.0)
##  scuttle                           1.14.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  sessioninfo                       1.2.2      2021-12-06 [1] RSPM (R 4.4.0)
##  Seurat                            5.1.0      2024-05-10 [1] RSPM (R 4.4.0)
##  SeuratObject                      5.0.2      2024-05-08 [1] RSPM (R 4.4.0)
##  shape                             1.4.6.1    2024-02-23 [1] RSPM (R 4.4.0)
##  shiny                             1.9.1      2024-08-01 [1] RSPM (R 4.4.0)
##  SingleCellExperiment            * 1.26.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  SnowballC                         0.7.1      2023-04-25 [1] RSPM (R 4.4.0)
##  softImpute                        1.4-1      2021-05-09 [1] RSPM (R 4.4.0)
##  sp                                2.1-4      2024-04-30 [1] RSPM (R 4.4.0)
##  spam                              2.10-0     2023-10-23 [1] RSPM (R 4.4.0)
##  SparseArray                       1.4.8      2024-05-24 [1] Bioconductor 3.19 (R 4.4.1)
##  SparseM                           1.84-2     2024-07-17 [1] RSPM (R 4.4.0)
##  sparseMatrixStats                 1.16.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  spatial                           7.3-17     2023-07-20 [2] CRAN (R 4.4.1)
##  spatstat.data                     3.1-2      2024-06-21 [1] RSPM (R 4.4.0)
##  spatstat.explore                  3.3-2      2024-08-21 [1] RSPM (R 4.4.0)
##  spatstat.geom                     3.3-3      2024-09-18 [1] RSPM (R 4.4.0)
##  spatstat.random                   3.3-2      2024-09-18 [1] RSPM (R 4.4.0)
##  spatstat.sparse                   3.1-0      2024-06-21 [1] RSPM (R 4.4.0)
##  spatstat.univar                   3.0-1      2024-09-05 [1] RSPM (R 4.4.0)
##  spatstat.utils                    3.1-0      2024-08-17 [1] RSPM (R 4.4.0)
##  stable                            1.1.6      2022-03-02 [1] RSPM (R 4.4.0)
##  stabledist                        0.7-2      2024-08-17 [1] RSPM (R 4.4.0)
##  statip                            0.2.3      2019-11-17 [1] RSPM (R 4.4.0)
##  statmod                           1.5.0      2023-01-06 [1] RSPM (R 4.4.0)
##  stringi                           1.8.4      2024-05-06 [1] RSPM (R 4.4.0)
##  stringr                           1.5.1      2023-11-14 [1] RSPM (R 4.4.0)
##  SummarizedExperiment            * 1.34.0     2024-05-01 [1] Bioconductor 3.19 (R 4.4.1)
##  survey                            4.4-2      2024-03-20 [1] RSPM (R 4.4.0)
##  survival                          3.7-0      2024-06-05 [2] RSPM (R 4.4.0)
##  systemfonts                       1.1.0      2024-05-15 [1] RSPM (R 4.4.0)
##  tensor                            1.5        2012-05-05 [1] RSPM (R 4.4.0)
##  textshaping                       0.4.0      2024-05-24 [1] RSPM (R 4.4.0)
##  TH.data                           1.1-2      2023-04-17 [1] RSPM (R 4.4.0)
##  tibble                            3.2.1      2023-03-20 [1] RSPM (R 4.4.0)
##  tidyr                           * 1.3.1      2024-01-24 [1] RSPM (R 4.4.0)
##  tidyselect                        1.2.1      2024-03-11 [1] RSPM (R 4.4.0)
##  tidySummarizedExperiment        * 1.14.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  tidytext                          0.4.2      2024-04-10 [1] RSPM (R 4.4.0)
##  tidytree                          0.4.6      2023-12-12 [1] RSPM (R 4.4.0)
##  timeDate                          4041.110   2024-09-22 [1] RSPM (R 4.4.0)
##  timeSeries                        4041.111   2024-09-22 [1] RSPM (R 4.4.0)
##  tokenizers                        0.3.0      2022-12-22 [1] RSPM (R 4.4.0)
##  treeio                            1.28.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  TreeSummarizedExperiment        * 2.12.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  truncnorm                         1.0-9      2023-03-20 [1] RSPM (R 4.4.0)
##  ttservice                       * 0.4.1      2024-06-07 [1] RSPM (R 4.4.0)
##  UCSC.utils                        1.0.0      2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  utf8                              1.2.4      2023-10-22 [1] RSPM (R 4.4.0)
##  uwot                              0.2.2      2024-04-21 [1] RSPM (R 4.4.0)
##  vctrs                             0.6.5      2023-12-01 [1] RSPM (R 4.4.0)
##  vegan                             2.6-8      2024-08-28 [1] RSPM (R 4.4.0)
##  vipor                             0.4.7      2023-12-18 [1] RSPM (R 4.4.0)
##  viridis                           0.6.5      2024-01-29 [1] RSPM (R 4.4.0)
##  viridisLite                       0.4.2      2023-05-02 [1] RSPM (R 4.4.0)
##  withr                             3.0.1      2024-07-31 [1] RSPM (R 4.4.0)
##  Wrench                            1.22.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  xfun                              0.47       2024-08-17 [1] RSPM (R 4.4.0)
##  XML                               3.99-0.17  2024-06-25 [1] RSPM (R 4.4.0)
##  xtable                            1.8-4      2019-04-21 [1] RSPM (R 4.4.0)
##  XVector                         * 0.44.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  yaml                              2.3.10     2024-07-26 [1] RSPM (R 4.4.0)
##  yulab.utils                       0.1.7      2024-08-26 [1] RSPM (R 4.4.0)
##  zCompositions                     1.5.0-4    2024-06-19 [1] RSPM (R 4.4.0)
##  zinbwave                          1.26.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  ZINQ                              2.0        2024-09-24 [1] Github (wdl2459/ZINQ-v2@40391a6)
##  zlibbioc                          1.50.0     2024-04-30 [1] Bioconductor 3.19 (R 4.4.1)
##  zoo                               1.8-12     2023-04-13 [1] RSPM (R 4.4.0)
## 
##  [1] /usr/local/lib/R/site-library
##  [2] /usr/local/lib/R/library
## 
## ──────────────────────────────────────────────────────────────────────────────