Introduction

bedbaser is an R API client for BEDbase that provides access to the bedhost API and includes convenience functions, such as to create GRanges and GRangesList objects.

Install bedbaser and create a BEDbase instance

Install bedbaser using BiocManager.

if (!"BiocManager" %in% rownames(installed.packages())) {
    install.packages("BiocManager")
}
BiocManager::install("bedbaser")

Load the package and create a BEDbase instance, optionally setting the cache to cache_path. If cache_path is not set, bedbaser will choose the default location.

## 125977 BED files available.

bedbaser can use the same cache as geniml’s BBClient by setting the cache_path to the same location. It will create the following structure:

cache_path
    bedfiles
        a/f/afile.bed.gz
    bedsets
        a/s/aset.txt

Convenience Functions

bedbaser includes convenience functions prefixed with bb_ to facilitate finding BED files, exploring their metadata, downloading files, and creating GRanges objects.

BEDbase statistics

Use bbs_stats() to display the total available BED files, BEDsets, and genomes. Set detailed to TRUE to display the type of BED formats and genomes available.

Find a BED file or BEDset

Use bb_list_beds() and bb_list_bedsets() to browse available resources in BEDbase. Both functions display the id and names of BED files and BEDsets. An id can be used to access a specific resource.

bb_list_beds(bedbase)
## # A tibble: 1,000 × 52
##    name                genome_alias bed_compliance data_format compliant_columns
##    <chr>               <chr>        <chr>          <chr>       <chr>            
##  1 Plasma B cells - T… "hg38"       bed6+4         encode_nar… 6                
##  2 Young_Daughter 3y3A "mm10"       bed5+5         bed_like_rs 5                
##  3 DU01: Damage H2AK1… ""           bed6+0         ucsc_bed    6                
##  4 total RNA at diagn… "hg19"       bed4+2         bed_like    4                
##  5 encode_16468        "hg38"       bed6+4         encode_nar… 6                
##  6 Human colon cancer… "hg19"       bed6+3         encode_bro… 6                
##  7 FGFR1(RA)_ChIP_Seq  "mm10"       bed6+4         encode_nar… 6                
##  8 encode_4362         "hg38"       bed6+4         encode_nar… 6                
##  9 TF ChIP-seq from H… "hg38"       bed6+4         encode_nar… 6                
## 10 H3K4me3 Wnt3KO Chi… "mm9"        bed6+4         encode_nar… 6                
## # ℹ 990 more rows
## # ℹ 47 more variables: non_compliant_columns <chr>, id <chr>,
## #   description <chr>, submission_date <chr>, last_update_date <chr>,
## #   is_universe <chr>, license_id <chr>, annotation.organism <chr>,
## #   annotation.species_id <chr>, annotation.genotype <chr>,
## #   annotation.phenotype <chr>, annotation.description <chr>,
## #   annotation.cell_type <chr>, annotation.cell_line <chr>, …
## # A tibble: 1,000 × 9
## # Groups:   id, name, md5sum, submission_date, last_update_date, description,
## #   author, source [1,000]
##    id         name  md5sum submission_date last_update_date description bed_ids 
##    <chr>      <chr> <chr>  <chr>           <chr>            <chr>       <list>  
##  1 encode_ba… enco… 462ea… 2025-04-25T01:… 2025-04-25T01:4… "Encode pr… <tibble>
##  2 encode_ba… enco… f6f15… 2025-04-24T23:… 2025-04-24T23:3… "Encode pr… <tibble>
##  3 encode_ba… enco… cf9f5… 2025-04-27T03:… 2025-04-27T03:1… "Encode pr… <tibble>
##  4 encode_ba… enco… 50cba… 2025-04-30T05:… 2025-04-30T05:3… "Encode pr… <tibble>
##  5 encode_ba… enco… 6054b… 2025-04-28T22:… 2025-04-28T22:2… "Encode pr… <tibble>
##  6 encode_ba… enco… 59f42… 2025-04-29T06:… 2025-04-29T06:2… "Encode pr… <tibble>
##  7 encode_ba… enco… 1cd93… 2025-05-02T20:… 2025-05-02T20:5… "Encode pr… <tibble>
##  8 excludera… excl… f6826… 2025-05-05T18:… 2025-05-05T18:3… "Exclude r… <tibble>
##  9 gse100000  gse1… 3da66… 2025-06-01T14:… 2025-06-01T14:5… "Data from… <tibble>
## 10 gse100302  gse1… a8df0… 2025-05-23T03:… 2025-05-23T03:4… "Data from… <tibble>
## # ℹ 990 more rows
## # ℹ 2 more variables: author <chr>, source <chr>

Examine metadata

Use bb_metadata() to learn more about a BED or BEDset associated with an id.

ex_bed <- bb_example(bedbase, "bed")
md <- bb_metadata(bedbase, ex_bed$id)
head(md)
## $name
## [1] "encode_10240"
## 
## $genome_alias
## [1] "hg38"
## 
## $genome_digest
## [1] "2230c535660fb4774114bfa966a62f823fdb6d21acf138d4"
## 
## $bed_compliance
## [1] "bed6+3"
## 
## $data_format
## [1] "encode_broadpeak"
## 
## $compliant_columns
## [1] 6

Show BED files in BEDset

Use bb_beds_in_bedset() to display the id of BEDs in a BEDset.

bb_beds_in_bedset(bedbase, "excluderanges")
## # A tibble: 81 × 32
##    name  genome_alias genome_digest bed_compliance data_format compliant_columns
##    <chr> <chr>        <chr>         <chr>          <chr>       <chr>            
##  1 mm10… mm10         0f10d83b1050… bed4+1         bed_like    4                
##  2 hg38… hg38         2230c535660f… bed4+1         bed_like    4                
##  3 T2T.… t2t-chm13    NA            bed4+8         bed_like    4                
##  4 TAIR… tair10       NA            bed4+2         bed_like    4                
##  5 mm9.… mm9          NA            bed4+1         bed_like    4                
##  6 T2T.… t2t-chm13    NA            bed4+1         bed_like    4                
##  7 danR… danrer10     NA            bed4+1         bed_like    4                
##  8 mm39… mm39         NA            bed4+7         bed_like    4                
##  9 mm9.… mm9          NA            bed4+4         bed_like    4                
## 10 hg19… hg19         baa91c8f6e27… bed4+7         bed_like    4                
## # ℹ 71 more rows
## # ℹ 26 more variables: non_compliant_columns <chr>, id <chr>,
## #   description <chr>, submission_date <chr>, last_update_date <chr>,
## #   is_universe <chr>, license_id <chr>, annotation.species_name <chr>,
## #   annotation.species_id <chr>, annotation.genotype <chr>,
## #   annotation.phenotype <chr>, annotation.description <chr>,
## #   annotation.cell_type <chr>, annotation.cell_line <chr>, …

Search for a BED file by keyword

Search for BED files by keywords. bb_bed_text_search() returns all BED files scored against a keyword query.

bb_bed_text_search(bedbase, "cancer", limit = 10)
## # A tibble: 10 × 52
##    id                   payload.species_name payload.species_id payload.genotype
##    <chr>                <chr>                <chr>              <chr>           
##  1 b33dca39-9e67-576a-… Homo sapiens         9606               ""              
##  2 43b3e61f-5e0b-b8fe-… Homo sapiens         9606               ""              
##  3 bb612399-36ab-6125-… Homo sapiens         9606               ""              
##  4 0f9848ff-51dc-5e7f-… Homo sapiens         9606               ""              
##  5 910a5753-a15b-5afc-… Homo sapiens         9606               ""              
##  6 b85718c4-511d-85e4-… Homo sapiens         9606               ""              
##  7 5fd3b113-2e75-23ea-… Homo sapiens         9606               ""              
##  8 5bd3a925-7dc2-1386-… Homo sapiens         9606               ""              
##  9 835c0159-780f-ca54-… Homo sapiens         9606               ""              
## 10 9c273213-8d8a-f64f-… Homo sapiens         9606               ""              
## # ℹ 48 more variables: payload.phenotype <chr>, payload.description <chr>,
## #   payload.cell_type <chr>, payload.cell_line <chr>, payload.tissue <chr>,
## #   payload.library_source <chr>, payload.assay <chr>, payload.antibody <chr>,
## #   payload.target <chr>, payload.treatment <chr>,
## #   payload.global_sample_id <chr>, payload.global_experiment_id <chr>,
## #   payload.original_file_name <chr>, score <chr>, metadata.name <chr>,
## #   metadata.genome_alias <chr>, metadata.genome_digest <chr>, …

Import a BED into a GRanges object

Create a GRanges object with a BED id with bb_to_granges, which downloads and imports a BED file using rtracklayer.

ex_bed <- bb_example(bedbase, "bed")
# Allow bedbaser to assign column names and types
bb_to_granges(bedbase, ex_bed$id, quietly = FALSE)
## 'getOption("repos")' replaces Bioconductor standard repositories, see
## 'help("repositories", package = "BiocManager")' for details.
## Replacement repositories:
##     CRAN: https://p3m.dev/cran/__linux__/noble/latest
## GRanges object with 41076 ranges and 5 metadata columns:
##           seqnames              ranges strand |        name     score
##              <Rle>           <IRanges>  <Rle> | <character> <numeric>
##       [1]     chr1       629971-630247      * |        id-1      1000
##       [2]     chr1       630555-630686      * |        id-2      1000
##       [3]     chr1       631456-631616      * |        id-3      1000
##       [4]     chr1       631623-631796      * |        id-4      1000
##       [5]     chr1       632786-632900      * |        id-5      1000
##       ...      ...                 ...    ... .         ...       ...
##   [41072]     chrX 155968377-155968453      * |    id-41072        20
##   [41073]     chrX 155997389-155997709      * |    id-41073        30
##   [41074]     chrX 156001649-156001891      * |    id-41074        30
##   [41075]     chrX 156002581-156002727      * |    id-41075        20
##   [41076]     chrY   20494510-20494735      * |    id-41076      1000
##           signalValue    pValue    qValue
##             <numeric> <numeric> <numeric>
##       [1]          -1        -1       100
##       [2]          -1        -1       100
##       [3]          -1        -1       100
##       [4]          -1        -1       100
##       [5]          -1        -1       100
##       ...         ...       ...       ...
##   [41072]          -1        -1   2.02910
##   [41073]          -1        -1   3.30539
##   [41074]          -1        -1   3.30539
##   [41075]          -1        -1   2.30251
##   [41076]          -1        -1 100.00000
##   -------
##   seqinfo: 711 sequences (1 circular) from hg38 genome

For BEDX+Y formats, a named list with column types may be passed through extra_cols if the column name and type are known. Otherwise, bb_to_granges guesses the column types and assigns column names.

# Manually assign column name and type using `extra_cols`
bb_to_granges(bedbase, ex_bed$id, extra_cols = c("column_name" = "character"))

bb_to_granges automatically assigns the column names and types for broad peak and narrow peak files.

bed_id <- "bbad85f21962bb8d972444f7f9a3a932"
md <- bb_metadata(bedbase, bed_id)
head(md)
## $name
## [1] "PM_137_NPC_CTCF_ChIP"
## 
## $genome_alias
## [1] "hg38"
## 
## $genome_digest
## [1] "2230c535660fb4774114bfa966a62f823fdb6d21acf138d4"
## 
## $bed_compliance
## [1] "bed6+4"
## 
## $data_format
## [1] "encode_narrowpeak_rs"
## 
## $compliant_columns
## [1] 6
bb_to_granges(bedbase, bed_id)
## GRanges object with 26210 ranges and 6 metadata columns:
##           seqnames            ranges strand |                   name     score
##              <Rle>         <IRanges>  <Rle> |            <character> <numeric>
##       [1]     chr1     869762-870077      * | 111-11-DSP-NPC-CTCF-..       587
##       [2]     chr1     904638-904908      * | 111-11-DSP-NPC-CTCF-..       848
##       [3]     chr1     921139-921331      * | 111-11-DSP-NPC-CTCF-..       177
##       [4]     chr1     939191-939364      * | 111-11-DSP-NPC-CTCF-..       139
##       [5]     chr1     976105-976282      * | 111-11-DSP-NPC-CTCF-..       185
##       ...      ...               ...    ... .                    ...       ...
##   [26206]     chrY 18445992-18446211      * | 111-11-DSP-NPC-CTCF-..       203
##   [26207]     chrY 18608331-18608547      * | 111-11-DSP-NPC-CTCF-..       203
##   [26208]     chrY 18669820-18670062      * | 111-11-DSP-NPC-CTCF-..       244
##   [26209]     chrY 18997783-18997956      * | 111-11-DSP-NPC-CTCF-..       191
##   [26210]     chrY 19433165-19433380      * | 111-11-DSP-NPC-CTCF-..       275
##           signalValue    pValue    qValue      peak
##             <numeric> <numeric> <numeric> <integer>
##       [1]    20.94161   58.7971   54.9321       152
##       [2]    30.90682   84.8282   80.3102       118
##       [3]     9.62671   17.7065   14.8446        69
##       [4]     8.10671   13.9033   11.1352        49
##       [5]     9.26375   18.5796   15.6985       129
##       ...         ...       ...       ...       ...
##   [26206]    10.64005   20.3549   17.4328       106
##   [26207]     8.00064   20.3991   17.4753       149
##   [26208]    12.16006   24.4764   21.4585       119
##   [26209]     8.97342   19.1163   16.2230        69
##   [26210]    12.21130   27.5139   24.4211        89
##   -------
##   seqinfo: 711 sequences (1 circular) from hg38 genome

Import a BEDset into a GRangesList

Create a GRangesList given a BEDset id with bb_to_grangeslist.

bedset_id <- "lola_hg38_ucsc_features"
bb_to_grangeslist(bedbase, bedset_id)
## GRangesList object of length 11:
## [[1]]
## GRanges object with 864 ranges and 0 metadata columns:
##         seqnames            ranges strand
##            <Rle>         <IRanges>  <Rle>
##     [1]     chr1    690078-6272609      *
##     [2]     chr1    690078-2326424      *
##     [3]     chr1    771707-6806566      *
##     [4]     chr1    771707-3153758      *
##     [5]     chr1    805477-4942653      *
##     ...      ...               ...    ...
##   [860]     chrY 23762211-26011096      *
##   [861]     chrY 23762211-26011096      *
##   [862]     chrY 23774007-25910251      *
##   [863]     chrY 26011096-26174983      *
##   [864]     chrY 26312489-26653776      *
##   -------
##   seqinfo: 711 sequences (1 circular) from hg38 genome
## 
## ...
## <10 more elements>

Save a BED file

Save BED files or BEDsets with bb_save:

bb_save(bedbase, ex_bed$id, tempdir())

Accessing BEDbase API endpoints

Because bedbaser uses the AnVIL Service class, it’s possible to access any endpoint of the BEDbase API.

show(bedbase)
## service: bedbase
## host: api.bedbase.org
## tags(); use bedbase$<tab completion>:
## # A tibble: 44 × 3
##    tag   operation                                                       summary
##    <chr> <chr>                                                           <chr>  
##  1 base  get_bedbase_db_stats_v1_genomes_get                             Get av…
##  2 base  get_bedbase_db_stats_v1_stats_get                               Get su…
##  3 base  get_detailed_stats_v1_detailed_stats_get                        Get de…
##  4 base  get_detailed_usage_v1_detailed_usage_get                        Get de…
##  5 base  redirect_to_download_v1_files__file_path__get                   Redire…
##  6 base  service_info_v1_service_info_get                                GA4GH …
##  7 bed   bed_to_bed_search_v1_bed_search_bed_post                        Search…
##  8 bed   embed_bed_file_v1_bed_embed_post                                Get em…
##  9 bed   get_bed_classification_v1_bed__bed_id__metadata_classification… Get cl…
## 10 bed   get_bed_embedding_v1_bed__bed_id__embedding_get                 Get em…
## # ℹ 34 more rows
## tag values:
##   base, bed, bedset, home, objects, search, NA
## schemas():
##   AccessMethod, AccessURL, BaseListResponse, BedClassification,
##   BedEmbeddingResult
##   # ... with 42 more elements

For example, to access a BED file’s stats, access the endpoint with $ and use httr to get the result. show will display information about the endpoint.

## 
## Attaching package: 'httr'
## The following object is masked from 'package:Biobase':
## 
##     content
show(bedbase$get_bed_stats_v1_bed__bed_id__metadata_stats_get)
## get_bed_stats_v1_bed__bed_id__metadata_stats_get 
## Get stats for a single BED record 
## Description:
##   Example bed_id: bbad85f21962bb8d972444f7f9a3a932
## 
## Parameters:
##   bed_id (string)
##     BED digest
id <- "bbad85f21962bb8d972444f7f9a3a932"
rsp <- bedbase$get_bed_stats_v1_bed__bed_id__metadata_stats_get(id)
content(rsp)
## $number_of_regions
## [1] 26210
## 
## $gc_content
## [1] 0.5
## 
## $median_tss_dist
## [1] 31480
## 
## $mean_region_width
## [1] 276.3
## 
## $exon_frequency
## [1] 1358
## 
## $exon_percentage
## [1] 0.0518
## 
## $intron_frequency
## [1] 9390
## 
## $intron_percentage
## [1] 0.3583
## 
## $intergenic_percentage
## [1] 0.4441
## 
## $intergenic_frequency
## [1] 11639
## 
## $promotercore_frequency
## [1] 985
## 
## $promotercore_percentage
## [1] 0.0376
## 
## $fiveutr_frequency
## [1] 720
## 
## $fiveutr_percentage
## [1] 0.0275
## 
## $threeutr_frequency
## [1] 1074
## 
## $threeutr_percentage
## [1] 0.041
## 
## $promoterprox_frequency
## [1] 1044
## 
## $promoterprox_percentage
## [1] 0.0398

Example: Change genomic coordinate system with liftOver

Given a BED id, we can use liftOver to convert one genomic coordinate system to another.

Install liftOver and rtracklayer then load the packages.

if (!"BiocManager" %in% rownames(installed.packages())) {
    install.packages("BiocManager")
}
BiocManager::install(c("liftOver", "rtracklayer"))

library(liftOver)
library(rtracklayer)

Create a GRanges object from a mouse genome. Create a BEDbase Service instance. Use the instance to create a GRanges object from the BEDbase id.

id <- "f2a5b06011706376560514c3f39648ea"
bedbase <- BEDbase()
gro <- bb_to_granges(bedbase, id)
gro
## GRanges object with 132610 ranges and 2 metadata columns:
##            seqnames            ranges strand |        name     score
##               <Rle>         <IRanges>  <Rle> | <character> <numeric>
##        [1]     chr1   3132268-3132768      + |  chr1-21633         1
##        [2]     chr1   3185464-3185964      + |  chr1-21634         1
##        [3]     chr1   3221560-3222060      + |   chr1-6085         1
##        [4]     chr1   3476307-3476807      + |  chr1-21635         1
##        [5]     chr1   3560226-3561000      + |   chr1-4747         1
##        ...      ...               ...    ... .         ...       ...
##   [132606]     chrY 90737580-90739215      + |     chrY-23         1
##   [132607]     chrY 90742758-90744732      + |     chrY-35         1
##   [132608]     chrY 90810972-90814119      + |     chrY-47         1
##   [132609]     chrY 90819248-90819748      + |    chrY-131         1
##   [132610]     chrY 90828312-90828949      + |    chrY-103         1
##   -------
##   seqinfo: 239 sequences (1 circular) from mm10 genome

Download the chain file from UCSC.

chain_url <- paste0(
    "https://hgdownload.cse.ucsc.edu/goldenPath/mm10/liftOver/",
    "mm10ToMm39.over.chain.gz"
)
tmpdir <- tempdir()
gz <- file.path(tmpdir, "mm10ToMm39.over.chain.gz")
download.file(chain_url, gz)
gunzip(gz, remove = FALSE)

Import the chain, set the sequence levels style, and set the genome for the GRanges object.

ch <- import.chain(file.path(tmpdir, "mm10ToMm39.over.chain"))
seqlevelsStyle(gro) <- "UCSC"
gro39 <- liftOver(gro, ch)
gro39 <- unlist(gro39)
genome(gro39) <- "mm39"
gro39
## GRanges object with 132675 ranges and 2 metadata columns:
##            seqnames            ranges strand |        name     score
##               <Rle>         <IRanges>  <Rle> | <character> <numeric>
##        [1]     chr1   3202491-3202991      + |  chr1-21633         1
##        [2]     chr1   3255687-3256187      + |  chr1-21634         1
##        [3]     chr1   3291783-3292283      + |   chr1-6085         1
##        [4]     chr1   3546530-3547030      + |  chr1-21635         1
##        [5]     chr1   3630449-3631223      + |   chr1-4747         1
##        ...      ...               ...    ... .         ...       ...
##   [132671]     chrY 90748849-90750484      + |     chrY-23         1
##   [132672]     chrY 90754027-90756001      + |     chrY-35         1
##   [132673]     chrY 90822241-90825388      + |     chrY-47         1
##   [132674]     chrY 90830517-90831017      + |    chrY-131         1
##   [132675]     chrY 90839581-90840218      + |    chrY-103         1
##   -------
##   seqinfo: 21 sequences from mm39 genome; no seqlengths

SessionInfo()

## R version 4.5.1 (2025-06-13)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: UTC
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] httr_1.4.7                             
##  [2] bedbaser_1.0.3                         
##  [3] liftOver_1.32.0                        
##  [4] Homo.sapiens_1.3.1                     
##  [5] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
##  [6] org.Hs.eg.db_3.21.0                    
##  [7] GO.db_3.21.0                           
##  [8] OrganismDbi_1.50.0                     
##  [9] GenomicFeatures_1.60.0                 
## [10] AnnotationDbi_1.70.0                   
## [11] Biobase_2.68.0                         
## [12] gwascat_2.40.0                         
## [13] R.utils_2.13.0                         
## [14] R.oo_1.27.1                            
## [15] R.methodsS3_1.8.2                      
## [16] rtracklayer_1.68.0                     
## [17] GenomicRanges_1.60.0                   
## [18] GenomeInfoDb_1.44.0                    
## [19] IRanges_2.42.0                         
## [20] S4Vectors_0.46.0                       
## [21] BiocGenerics_0.54.0                    
## [22] generics_0.1.4                         
## [23] BiocStyle_2.36.0                       
## 
## loaded via a namespace (and not attached):
##   [1] jsonlite_2.0.0              magrittr_2.0.3             
##   [3] rmarkdown_2.29              fs_1.6.6                   
##   [5] BiocIO_1.18.0               zlibbioc_1.54.0            
##   [7] ragg_1.4.0                  vctrs_0.6.5                
##   [9] memoise_2.0.1               Rsamtools_2.24.0           
##  [11] RCurl_1.98-1.17             htmltools_0.5.8.1          
##  [13] S4Arrays_1.8.1              BiocBaseUtils_1.10.0       
##  [15] progress_1.2.3              lambda.r_1.2.4             
##  [17] curl_6.4.0                  SparseArray_1.8.0          
##  [19] sass_0.4.10                 bslib_0.9.0                
##  [21] htmlwidgets_1.6.4           desc_1.4.3                 
##  [23] httr2_1.2.0                 futile.options_1.0.1       
##  [25] cachem_1.1.0                GenomicAlignments_1.44.0   
##  [27] mime_0.13                   lifecycle_1.0.4            
##  [29] pkgconfig_2.0.3             Matrix_1.7-3               
##  [31] R6_2.6.1                    fastmap_1.2.0              
##  [33] GenomeInfoDbData_1.2.14     MatrixGenerics_1.20.0      
##  [35] shiny_1.11.1                digest_0.6.37              
##  [37] textshaping_1.0.1           RSQLite_2.4.2              
##  [39] filelock_1.0.3              abind_1.4-8                
##  [41] compiler_4.5.1              withr_3.0.2                
##  [43] bit64_4.6.0-1               BiocParallel_1.42.1        
##  [45] DBI_1.2.3                   biomaRt_2.64.0             
##  [47] rappdirs_0.3.3              DelayedArray_0.34.1        
##  [49] rjson_0.2.23                tools_4.5.1                
##  [51] httpuv_1.6.16               glue_1.8.0                 
##  [53] restfulr_0.0.16             promises_1.3.3             
##  [55] grid_4.5.1                  BSgenome_1.76.0            
##  [57] tidyr_1.3.1                 data.table_1.17.8          
##  [59] hms_1.1.3                   utf8_1.2.6                 
##  [61] xml2_1.3.8                  XVector_0.48.0             
##  [63] pillar_1.11.0               stringr_1.5.1              
##  [65] later_1.4.2                 splines_4.5.1              
##  [67] dplyr_1.1.4                 BiocFileCache_2.16.0       
##  [69] lattice_0.22-7              survival_3.8-3             
##  [71] bit_4.6.0                   tidyselect_1.2.1           
##  [73] RBGL_1.84.0                 Biostrings_2.76.0          
##  [75] miniUI_0.1.2                knitr_1.50                 
##  [77] bookdown_0.43               SummarizedExperiment_1.38.1
##  [79] snpStats_1.58.0             futile.logger_1.4.3        
##  [81] xfun_0.52                   matrixStats_1.5.0          
##  [83] DT_0.33                     stringi_1.8.7              
##  [85] UCSC.utils_1.4.0            yaml_2.3.10                
##  [87] evaluate_1.0.4              codetools_0.2-20           
##  [89] tibble_3.3.0                AnVILBase_1.2.0            
##  [91] BiocManager_1.30.26         graph_1.86.0               
##  [93] cli_3.6.5                   AnVIL_1.20.1               
##  [95] xtable_1.8-4                systemfonts_1.2.3          
##  [97] jquerylib_0.1.4             Rcpp_1.1.0                 
##  [99] dbplyr_2.5.0                png_0.1-8                  
## [101] rapiclient_0.1.8            XML_3.99-0.18              
## [103] parallel_4.5.1              pkgdown_2.1.3              
## [105] blob_1.2.4                  prettyunits_1.2.0          
## [107] bitops_1.0-9                txdbmaker_1.4.2            
## [109] VariantAnnotation_1.54.1    purrr_1.1.0                
## [111] crayon_1.5.3                rlang_1.1.6                
## [113] KEGGREST_1.48.1             formatR_1.14