vignettes/cBioPortalDataErrors.Rmd
cBioPortalDataErrors.Rmd
This document serves as a reporting tool for errors that occur when running our utility functions on the cBioPortal datasets.
cBioPortalData()
)
Typically, the number of errors encountered via the API are low. There are only a handful of packages that error when we apply the utility functions to provide a MultiAssayExperiment data representation.
First, we load the error Rda
dataset.
api_errs <- system.file(
"extdata", "api", "err_api_info.rda",
package = "cBioPortalData", mustWork = TRUE
)
load(api_errs)
We can now inspect the contents of the data:
class(err_api_info)
## [1] "list"
length(err_api_info)
## [1] 6
lengths(err_api_info)
## Barcodes must start with 'TCGA'
## 2
## group length is 0 but data length > 0
## 1
## Frequency of NA values higher than the cutoff tolerance
## 2
## Inconsistent build numbers found
## 33
## `n` must be a single number, not an integer `NA`.
## 1
## Argument 1 must be a data frame or a named atomic vector.
## 1
There were about 6 unique errors during the last build run.
names(err_api_info)
## [1] "Barcodes must start with 'TCGA'"
## [2] "group length is 0 but data length > 0"
## [3] "Frequency of NA values higher than the cutoff tolerance"
## [4] "Inconsistent build numbers found"
## [5] "`n` must be a single number, not an integer `NA`."
## [6] "Argument 1 must be a data frame or a named atomic vector."
The most common error was
Inconsistent build numbers found
. This is due to
annotations from different build numbers that were not able to be
resolved.
To see what datasets (cancer_study_id
s) have that error
we can use:
err_api_info[['Inconsistent build numbers found']]
## [1] "msk_ch_2020" "msk_access_2021"
## [3] "mixed_msk_tcga_2021" "mixed_impact_subset_2022"
## [5] "pan_origimed_2020" "prad_msk_stopsack_2021"
## [7] "pancan_pcawg_2020" "prad_pik3r1_msk_2021"
## [9] "skcm_tcga" "stad_tcga"
## [11] "stad_tcga_pub" "skcm_tcga_pan_can_atlas_2018"
## [13] "stad_tcga_pan_can_atlas_2018" "stes_tcga_pub"
## [15] "summit_2018" "cfdna_msk_2019"
## [17] "blca_bcan_hcrn_2022" "nsclc_ctdx_msk_2022"
## [19] "thyroid_mskcc_2016" "skcm_mskcc_2014"
## [21] "tmb_mskcc_2018" "rectal_msk_2019"
## [23] "skcm_tcga_pub_2015" "msk_spectrum_tme_2022"
## [25] "ucec_ccr_cfdna_msk_2022" "paired_bladder_2022"
## [27] "mtnn_msk_2022" "pog570_bcgsc_2020"
## [29] "sarcoma_msk_2023" "bowel_colitis_msk_2022"
## [31] "luad_mskcc_2023_met_organotropism" "coad_silu_2022"
## [33] "paac_msk_jco_2023"
We can also have a look at the entirety of the dataset.
err_api_info
## $`Barcodes must start with 'TCGA'`
## [1] "blca_msk_tcga_2020" "nsclc_tcga_broad_2016"
##
## $`group length is 0 but data length > 0`
## [1] "glioma_msk_2018"
##
## $`Frequency of NA values higher than the cutoff tolerance`
## [1] "mixed_selpercatinib_2020" "ucec_ccr_msk_2022"
##
## $`Inconsistent build numbers found`
## [1] "msk_ch_2020" "msk_access_2021"
## [3] "mixed_msk_tcga_2021" "mixed_impact_subset_2022"
## [5] "pan_origimed_2020" "prad_msk_stopsack_2021"
## [7] "pancan_pcawg_2020" "prad_pik3r1_msk_2021"
## [9] "skcm_tcga" "stad_tcga"
## [11] "stad_tcga_pub" "skcm_tcga_pan_can_atlas_2018"
## [13] "stad_tcga_pan_can_atlas_2018" "stes_tcga_pub"
## [15] "summit_2018" "cfdna_msk_2019"
## [17] "blca_bcan_hcrn_2022" "nsclc_ctdx_msk_2022"
## [19] "thyroid_mskcc_2016" "skcm_mskcc_2014"
## [21] "tmb_mskcc_2018" "rectal_msk_2019"
## [23] "skcm_tcga_pub_2015" "msk_spectrum_tme_2022"
## [25] "ucec_ccr_cfdna_msk_2022" "paired_bladder_2022"
## [27] "mtnn_msk_2022" "pog570_bcgsc_2020"
## [29] "sarcoma_msk_2023" "bowel_colitis_msk_2022"
## [31] "luad_mskcc_2023_met_organotropism" "coad_silu_2022"
## [33] "paac_msk_jco_2023"
##
## $``n` must be a single number, not an integer `NA`.`
## [1] "msk_met_2021"
##
## $`Argument 1 must be a data frame or a named atomic vector.`
## [1] "makeanimpact_ccr_2023"
cBioDataPack()
Now let’s look at the errors in the packaged datasets that are used
for cBioDataPack
:
pack_errs <- system.file(
"extdata", "pack", "err_pack_info.rda",
package = "cBioPortalData", mustWork = TRUE
)
load(pack_errs)
We can do the same for this data:
length(err_pack_info)
## [1] 5
lengths(err_pack_info)
## more columns than column names
## 9
## Frequency of NA values higher than the cutoff tolerance
## 5
## non-character argument
## 2
## invalid class "ExperimentList" object: \n Non-unique names provided
## 2
## 'wget' call had nonzero exit status
## 11
We can get a list of all the errors present:
names(err_pack_info)
## [1] "more columns than column names"
## [2] "Frequency of NA values higher than the cutoff tolerance"
## [3] "non-character argument"
## [4] "invalid class \"ExperimentList\" object: \n Non-unique names provided"
## [5] "'wget' call had nonzero exit status"
And finally the full list of errors:
err_pack_info
## $`more columns than column names`
## [1] "ccrcc_utokyo_2013" "coadread_tcga_pan_can_atlas_2018"
## [3] "gbm_cptac_2021" "ov_tcga_pan_can_atlas_2018"
## [5] "pan_origimed_2020" "sarc_tcga_pan_can_atlas_2018"
## [7] "luad_mskimpact_2021" "mbl_dkfz_2017"
## [9] "brca_tcga_pan_can_atlas_2018"
##
## $`Frequency of NA values higher than the cutoff tolerance`
## [1] "ihch_mskcc_2020" "ihch_msk_2021"
## [3] "mixed_selpercatinib_2020" "mixed_msk_tcga_2021"
## [5] "ucec_ccr_msk_2022"
##
## $`non-character argument`
## [1] "mbn_mdacc_2013" "pcpg_tcga_pub"
##
## $`invalid class "ExperimentList" object: \n Non-unique names provided`
## [1] "stad_tcga_pub" "mpnst_mskcc"
##
## $`'wget' call had nonzero exit status`
## [1] "makeanimpact_ccr_2023" "prad_organoids_msk_2022"
## [3] "mtnn_msk_2022" "sarcoma_msk_2023"
## [5] "bowel_colitis_msk_2022" "bladder_mskcc_2022"
## [7] "paac_msk_jco_2023" "nbl_msk_2023"
## [9] "rms_msk_2023" "gist_msk_2023"
## [11] "egc_trap_ccr_msk_2023"
## R version 4.3.2 (2023-10-31)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] cBioPortalData_2.14.2 MultiAssayExperiment_1.28.0
## [3] SummarizedExperiment_1.32.0 Biobase_2.62.0
## [5] GenomicRanges_1.54.1 GenomeInfoDb_1.38.5
## [7] IRanges_2.36.0 S4Vectors_0.40.2
## [9] BiocGenerics_0.48.1 MatrixGenerics_1.14.0
## [11] matrixStats_1.2.0 AnVIL_1.14.1
## [13] dplyr_1.1.4 BiocStyle_2.30.0
##
## loaded via a namespace (and not attached):
## [1] DBI_1.2.1 bitops_1.0-7
## [3] formatR_1.14 biomaRt_2.58.2
## [5] rlang_1.1.3 magrittr_2.0.3
## [7] compiler_4.3.2 RSQLite_2.3.5
## [9] GenomicFeatures_1.54.3 png_0.1-8
## [11] systemfonts_1.0.5 vctrs_0.6.5
## [13] rvest_1.0.3 stringr_1.5.1
## [15] pkgconfig_2.0.3 crayon_1.5.2
## [17] fastmap_1.1.1 dbplyr_2.4.0
## [19] XVector_0.42.0 ellipsis_0.3.2
## [21] utf8_1.2.4 Rsamtools_2.18.0
## [23] promises_1.2.1 rmarkdown_2.25
## [25] tzdb_0.4.0 ragg_1.2.7
## [27] purrr_1.0.2 bit_4.0.5
## [29] xfun_0.41 zlibbioc_1.48.0
## [31] cachem_1.0.8 jsonlite_1.8.8
## [33] progress_1.2.3 blob_1.2.4
## [35] later_1.3.2 DelayedArray_0.28.0
## [37] BiocParallel_1.36.0 prettyunits_1.2.0
## [39] parallel_4.3.2 R6_2.5.1
## [41] bslib_0.6.1 stringi_1.8.3
## [43] rtracklayer_1.62.0 jquerylib_0.1.4
## [45] Rcpp_1.0.12 bookdown_0.37
## [47] knitr_1.45 readr_2.1.5
## [49] httpuv_1.6.14 Matrix_1.6-5
## [51] tidyselect_1.2.0 abind_1.4-5
## [53] yaml_2.3.8 codetools_0.2-19
## [55] miniUI_0.1.1.1 curl_5.2.0
## [57] lattice_0.22-5 tibble_3.2.1
## [59] KEGGREST_1.42.0 shiny_1.8.0
## [61] evaluate_0.23 desc_1.4.3
## [63] lambda.r_1.2.4 futile.logger_1.4.3
## [65] BiocFileCache_2.10.1 xml2_1.3.6
## [67] Biostrings_2.70.2 pillar_1.9.0
## [69] BiocManager_1.30.22.4 filelock_1.0.3
## [71] DT_0.31 TCGAutils_1.22.2
## [73] generics_0.1.3 RCurl_1.98-1.14
## [75] hms_1.1.3 xtable_1.8-4
## [77] RTCGAToolbox_2.32.1 glue_1.7.0
## [79] tools_4.3.2 BiocIO_1.12.0
## [81] data.table_1.15.0 GenomicAlignments_1.38.2
## [83] rapiclient_0.1.3 XML_3.99-0.16.1
## [85] fs_1.6.3 grid_4.3.2
## [87] tidyr_1.3.1 AnnotationDbi_1.64.1
## [89] GenomeInfoDbData_1.2.11 RaggedExperiment_1.26.0
## [91] RJSONIO_1.3-1.9 restfulr_0.0.15
## [93] cli_3.6.2 rappdirs_0.3.3
## [95] textshaping_0.3.7 futile.options_1.0.1
## [97] fansi_1.0.6 GenomicDataCommons_1.26.0
## [99] S4Arrays_1.2.0 sass_0.4.8
## [101] digest_0.6.34 SparseArray_1.2.3
## [103] rjson_0.2.21 htmlwidgets_1.6.4
## [105] memoise_2.0.1 htmltools_0.5.7
## [107] pkgdown_2.0.7 lifecycle_1.0.4
## [109] httr_1.4.7 mime_0.12
## [111] bit64_4.0.5